rel.vert.basic.triCC {pcds} | R Documentation |
The index of the CC
-vertex region
in a standard basic triangle form that contains a point
Description
Returns the index of the vertex
whose region contains point p
in
the standard basic triangle form T_b=T((0,0),(1,0),(c_1,c_2))
where c_1
is in [0,1/2]
, c_2>0
and (1-c_1)^2+c_2^2 \le 1
and vertex regions are
based on the circumcenter CC
of T_b
.
(see the plots in the example for illustrations).
The vertices of the standard basic triangle form T_b
are labeled as
1=(0,0)
, 2=(1,0)
,and 3=(c_1,c_2)
also according to the row number the vertex is recorded in T_b
.
If the point, p
, is not inside T_b
,
then the function yields NA
as output.
The corresponding vertex region is the polygon
whose interior points are closest to that vertex.
Any given triangle can be mapped to the standard basic triangle form by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle form is useful for simulation studies under the uniformity hypothesis.
See also (Ceyhan (2005, 2010)).
Usage
rel.vert.basic.triCC(p, c1, c2)
Arguments
p |
A 2D point for which |
c1 , c2 |
Positive real numbers
which constitute the upper vertex of the standard basic triangle form
(i.e., the vertex adjacent to the shorter edges of |
Value
A list
with two elements
rv |
Index of the |
tri |
The vertices of the triangle,
where row number corresponds to the vertex index in |
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2010).
“Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.
Ceyhan E (2012).
“An investigation of new graph invariants related to the domination number of random proximity catch digraphs.”
Methodology and Computing in Applied Probability, 14(2), 299-334.
See Also
rel.vert.triCM
, rel.vert.tri
,
rel.vert.triCC
, rel.vert.basic.triCM
,
rel.vert.basic.tri
, and rel.vert.std.triCM
Examples
c1<-.4; c2<-.6; #try also c1<-.5; c2<-.5;
P<-c(.3,.2)
rel.vert.basic.triCC(P,c1,c2)
A<-c(0,0);B<-c(1,0);C<-c(c1,c2);
Tb<-rbind(A,B,C)
CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tb[,1])
Ylim<-range(Tb[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tb,asp=1,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Tb,CC,Ds)
xc<-txt[,1]+c(-.03,.03,0.02,-.01,.05,-.05,.01)
yc<-txt[,2]+c(.02,.02,.03,.06,.03,.03,-.03)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)
RV1<-(A+D3+CC+D2)/4
RV2<-(B+D3+CC+D1)/4
RV3<-(C+D2+CC+D1)/4
txt<-rbind(RV1,RV2,RV3)
xc<-txt[,1]
yc<-txt[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)
n<-20 #try also n<-40
Xp<-runif.basic.tri(n,c1,c2)$g
Rv<-vector()
for (i in 1:n)
Rv<-c(Rv,rel.vert.basic.triCC(Xp[i,],c1,c2)$rv)
Rv
Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tb,asp=1,xlab="",pch=".",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(Xp,pch=".")
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(Rv))
txt<-rbind(Tb,CC,Ds)
xc<-txt[,1]+c(-.03,.03,0.02,-.01,.05,-.05,.01)
yc<-txt[,2]+c(.02,.02,.03,.06,.03,.03,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)