rel.edge.tri {pcds} | R Documentation |
The index of the edge region in a triangle that contains the point
Description
Returns the index of the edge
whose region contains point, p
, in
the triangle tri
=T(A,B,C)
with edge regions based on center M=(m_1,m_2)
in Cartesian coordinates or
M=(\alpha,\beta,\gamma)
in barycentric coordinates
in the interior of the triangle tri
.
Edges are labeled as 3 for edge AB
,
1 for edge BC
, and 2 for edge AC
.
If the point, p
, is not inside tri
,
then the function yields NA
as output.
Edge region 1 is the triangle T(B,C,M)
,
edge region 2 is T(A,C,M)
,
and edge region 3 is T(A,B,M)
.
See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).
Usage
rel.edge.tri(p, tri, M)
Arguments
p |
A 2D point for which |
tri |
A |
M |
A 2D point in Cartesian coordinates
or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle |
Value
A list
with three elements
re |
Index of the |
tri |
The vertices of the triangle,
where row labels are |
desc |
Description of the edge labels |
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2010).
“Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.
Ceyhan E (2012).
“An investigation of new graph invariants related to the domination number of random proximity catch digraphs.”
Methodology and Computing in Applied Probability, 14(2), 299-334.
Ceyhan E, Priebe CE, Marchette DJ (2007).
“A new family of random graphs for testing spatial segregation.”
Canadian Journal of Statistics, 35(1), 27-50.
See Also
rel.edge.triCM
, rel.edge.basic.triCM
,
rel.edge.basic.tri
, rel.edge.std.triCM
,
and edge.reg.triCM
Examples
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
P<-c(1.4,1.2)
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)
rel.edge.tri(P,Tr,M)
n<-20 #try also n<-40
Xp<-runif.tri(n,Tr)$g
re<-vector()
for (i in 1:n)
re<-c(re,rel.edge.tri(Xp[i,],Tr,M)$re)
re
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Tr)}
plot(Tr,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".")
L<-Tr; R<-rbind(M,M,M)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(re))
txt<-rbind(Tr,M)
xc<-txt[,1]
yc<-txt[,2]
txt.str<-c("A","B","C","M")
text(xc,yc,txt.str)
p1<-(A+B+M)/3
p2<-(B+C+M)/3
p3<-(A+C+M)/3
plot(Tr,xlab="",ylab="", main="Illustration of M-edge regions in a triangle",
axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-Tr; R<-rbind(M,M,M)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Tr,M,p1,p2,p3)
xc<-txt[,1]+c(-.02,.02,.02,.02,.02,.02,.02)
yc<-txt[,2]+c(.02,.02,.04,.05,.02,.02,.02)
txt.str<-c("A","B","C","M","re=3","re=1","re=2")
text(xc,yc,txt.str)