rassocII.std.tri {pcds} | R Documentation |
Generation of points associated (in a Type II fashion)
with the edges of T_e
Description
An object of class "Patterns"
.
Generates n
points uniformly
in the standard equilateral triangle
T_e=T((0,0),(1,0),(1/2,\sqrt{3}/2))
under the type II association alternative for eps
in (0,\sqrt{3}/6=0.2886751]
.
In the type II association, the annular allowed regions
around the edges are determined by
the parameter eps
where \sqrt{3}/6
-eps
is the distance
from the interior triangle
(i.e., forbidden region for association) to T_e
(see examples for a sample plot.)
Usage
rassocII.std.tri(n, eps)
Arguments
n |
A positive integer representing the number of points to be generated. |
eps |
A positive real number
representing the parameter of type II association
(where |
Value
A list
with the elements
type |
The type of the point pattern |
mtitle |
The |
parameters |
The attraction parameter, |
ref.points |
The input set of points |
gen.points |
The output set of generated points associated
with |
tri.Y |
Logical output for triangulation
based on |
desc.pat |
Description of the point pattern |
num.points |
The |
xlimit , ylimit |
The ranges of the |
Author(s)
Elvan Ceyhan
See Also
rseg.circular
, rassoc.circular
,
rsegII.std.tri
, and rseg.multi.tri
Examples
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-100 #try also n<-20 or n<-100 or 1000
eps<-.2 #try also .25, .1
set.seed(1)
Xdt<-rassocII.std.tri(n,eps)
Xdt
summary(Xdt)
plot(Xdt,asp=1)
Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
Xp<-Xdt$gen.points
plot(Te,pch=".",xlab="",ylab="",
main="Type II association in the \n standard equilateral triangle",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
points(Xp)
#The support for the Type II association alternative
A1<-c(1/2-eps*sqrt(3),sqrt(3)/6-eps);
B1<-c(1/2+eps*sqrt(3),sqrt(3)/6-eps);
C1<-c(1/2,sqrt(3)/6+2*eps);
supp<-rbind(A1,B1,C1)
plot(Te,asp=1,pch=".",xlab="",ylab="",
main="Support of the Type II Association",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
polygon(Te,col=5)
polygon(supp,col=0)
points(Xp)