rassoc.tri {pcds} | R Documentation |
Generation of points associated (in a Type I fashion) with the vertices of a triangle
Description
An object of class "Patterns"
.
Generates n
points uniformly in the support
for Type I association in a given triangle, tri
.
delta
is the parameter of association
(that is, only \delta 100
% area around each vertex in
the triangle is allowed for point generation).
delta
corresponds to eps
in the standard equilateral triangle
T_e
as delta=4eps^2/3
(see rseg.std.tri
function).
See (Ceyhan et al. (2006); Ceyhan et al. (2007); Ceyhan (2011)) for more on the association pattern.
Usage
rassoc.tri(n, tri, delta)
Arguments
n |
A positive integer representing the number of points
to be generated from the association pattern
in the triangle, |
tri |
A |
delta |
A positive real number in |
Value
A list
with the elements
type |
The type of the pattern from which points are to be generated |
mtitle |
The |
parameters |
Attraction parameter, |
ref.points |
The input set of points,
i.e., vertices of |
gen.points |
The output set of generated points
associated with the vertices of |
tri.Y |
Logical output, |
desc.pat |
Description of the point pattern |
num.points |
The |
xlimit , ylimit |
The ranges of the |
Author(s)
Elvan Ceyhan
References
Ceyhan E (2011).
“Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family.”
Communications in Statistics - Theory and Methods, 40(8), 1363-1395.
Ceyhan E, Priebe CE, Marchette DJ (2007).
“A new family of random graphs for testing spatial segregation.”
Canadian Journal of Statistics, 35(1), 27-50.
Ceyhan E, Priebe CE, Wierman JC (2006).
“Relative density of the random r
-factor proximity catch digraphs for testing spatial patterns of segregation and association.”
Computational Statistics & Data Analysis, 50(8), 1925-1964.
See Also
rseg.tri
, rassoc.std.tri
,
rassocII.std.tri
, and rassoc.multi.tri
Examples
n<-100
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C)
del<-.4
Xdt<-rassoc.tri(n,Tr,del)
Xdt
summary(Xdt)
plot(Xdt)
Xp<-Xdt$g
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",xlab="",ylab="",
main="Points from Type I Association \n in one Triangle",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp)
xc<-Tr[,1]+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02,.02,.03)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)