prj.nondegPEcent2edges {pcds} | R Documentation |
Projections of Centers for non-degenerate asymptotic distribution of domination number of Proportional Edge Proximity Catch Digraphs (PE-PCDs) to its edges
Description
Returns the projections
from center cent
to the edges on the extension of the lines
joining cent
to the vertices
in the triangle, tri
. Here M is one of the three centers
which gives nondegenerate asymptotic distribution
of the domination number of PE-PCD for uniform data in tri
for a given expansion parameter r
in (1,1.5]
.
The center label cent
values 1,2,3
correspond
to the vertices M_1
, M_2
,
and M_3
(i.e., row numbers in the
output of center.nondegPE(tri,r)
); default for cent
is 1.
cent
becomes center of mass CM
for r=1.5
.
See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011)).
Usage
prj.nondegPEcent2edges(tri, r, cent = 1)
Arguments
tri |
A |
r |
A positive real number which serves
as the expansion parameter in PE proximity region;
must be in |
cent |
Index of the center (as |
Value
Three projection points (stacked row-wise)
from one of the centers (as 1,2,3
corresponding to
M_1,\,M_2,\,M_3
)
which gives nondegenerate asymptotic distribution of
the domination number of PE-PCD for
uniform data in tri
for expansion parameter r
in (1,1.5]
.
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2011).
“Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family.”
Communications in Statistics - Theory and Methods, 40(8), 1363-1395.
Ceyhan E, Priebe CE (2007).
“On the Distribution of the Domination Number of a New Family of Parametrized Random Digraphs.”
Model Assisted Statistics and Applications, 1(4), 231-255.
See Also
prj.cent2edges.basic.tri
and prj.cent2edges
Examples
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
r<-1.35
prj.nondegPEcent2edges(Tr,r,cent=2)
Ms<-center.nondegPE(Tr,r)
M1=Ms[1,]
Ds<-prj.nondegPEcent2edges(Tr,r,cent=1)
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",xlab="",ylab="",
main="Projections from a non-degeneracy center\n to the edges of the triangle",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Ms,pch=".",col=1)
polygon(Ms,lty = 2)
xc<-Tr[,1]+c(-.02,.03,.02)
yc<-Tr[,2]+c(-.02,.04,.04)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)
txt<-Ms
xc<-txt[,1]+c(-.02,.04,-.04)
yc<-txt[,2]+c(-.02,.04,.04)
txt.str<-c("M1","M2","M3")
text(xc,yc,txt.str)
points(Ds,pch=4,col=2)
L<-rbind(M1,M1,M1); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2,lwd=2,col=4)
txt<-Ds
xc<-txt[,1]+c(-.02,.04,-.04)
yc<-txt[,2]+c(-.02,.04,.04)
txt.str<-c("D1","D2","D3")
text(xc,yc,txt.str)
prj.nondegPEcent2edges(Tr,r,cent=3)
#gives an error message if center index, cent, is different from 1, 2 or 3
prj.nondegPEcent2edges(Tr,r=1.49,cent=2)
#gives an error message if r>1.5