prj.cent2edges.basic.tri {pcds} | R Documentation |
Projections of a point inside the standard basic triangle form to its edges
Description
Returns the projections
from a general center M=(m_1,m_2)
in Cartesian coordinates
or M=(\alpha,\beta,\gamma)
in
barycentric coordinates
in the interior of the standard basic triangle form
T_b=T((0,0),(1,0),(c_1,c_2))
to the edges on the extension of the lines joining M
to the vertices (see the examples for an illustration).
In the standard basic triangle form T_b
,
c_1
is in [0,1/2]
, c_2>0
and (1-c_1)^2+c_2^2 \le 1
.
Any given triangle can be mapped to the standard basic triangle form by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle form is useful for simulation studies under the uniformity hypothesis.
See also (Ceyhan (2005, 2010)).
Usage
prj.cent2edges.basic.tri(c1, c2, M)
Arguments
c1 , c2 |
Positive real numbers
which constitute the vertex of the standard basic triangle form
adjacent to the shorter edges; |
M |
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard basic triangle form. |
Value
Three projection points (stacked row-wise)
from a general center M=(m_1,m_2)
in Cartesian coordinates
or M=(\alpha,\beta,\gamma)
in barycentric coordinates
in the interior of a standard basic triangle form to the edges on
the extension of the lines joining M
to the vertices;
row i
is the projection point into edge i
, for i=1,2,3
.
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2010).
“Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.
See Also
prj.cent2edges
and prj.nondegPEcent2edges
Examples
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C);
M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.2)
Ds<-prj.cent2edges.basic.tri(c1,c2,M)
Ds
Xlim<-range(Tb[,1])
Ylim<-range(Tb[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Tb)}
#need to run this when M is given in barycentric coordinates
plot(Tb,pch=".",xlab="",ylab="",axes=TRUE,
xlim=Xlim+xd*c(-.1,.1),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
L<-rbind(M,M,M); R<-Tb
segments(L[,1], L[,2], R[,1], R[,2], lty = 3,col=2)
xc<-Tb[,1]+c(-.04,.05,.04)
yc<-Tb[,2]+c(.02,.02,.03)
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)
txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.03,-.03,0)
yc<-txt[,2]+c(-.02,.02,.02,-.03)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)