num.arcsCSmid.int {pcds} | R Documentation |
Number of Arcs of of Central Similarity Proximity Catch Digraphs (CS-PCDs) - middle interval case
Description
Returns the number of arcs of of Central Similarity Proximity Catch Digraphs (CS-PCDs) whose vertices are
the given 1D numerical data set, Xp
.
CS proximity region N_{CS}(x,t,c)
is defined with respect to the interval
int
=(a,b)
for this function. CS proximity region is constructed with expansion parameter t>0
and
centrality parameter c \in (0,1)
.
Vertex regions are based on the center associated with the centrality parameter c \in (0,1)
.
For the interval, int
=(a,b)
, the parameterized center is M_c=a+c(b-a)
and for the number of arcs,
loops are not allowed so arcs are only possible for points inside the middle interval int
for this function.
See also (Ceyhan (2016)).
Usage
num.arcsCSmid.int(Xp, int, t, c = 0.5)
Arguments
Xp |
A set or |
int |
A |
t |
A positive real number which serves as the expansion parameter in CS proximity region. |
c |
A positive real number in |
Value
Number of arcs for the CS-PCD whose vertices are the 1D data set, Xp
,
with expansion parameter, r \ge 1
, and centrality parameter, c \in (0,1)
. PE proximity regions are defined only
for Xp
points inside the interval int
, i.e., arcs are possible for such points only.
Author(s)
Elvan Ceyhan
References
Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity.” REVSTAT, 14(4), 349-394.
See Also
num.arcsCSend.int
, num.arcsPEmid.int
, and num.arcsPEend.int
Examples
c<-.4
t<-2
a<-0; b<-10; int<-c(a,b)
n<-10
Xp<-runif(n,a,b)
num.arcsCSmid.int(Xp,int,t,c)
num.arcsCSmid.int(Xp,int,t,c=.3)
num.arcsCSmid.int(Xp,int,t=1.5,c)
#num.arcsCSmid.int(Xp,int,t,c+5) #gives error
#num.arcsCSmid.int(Xp,int,t,c+10)
n<-10 #try also n<-20
Xp<-runif(n,a-5,b+5)
num.arcsCSint(Xp,int,t,c)
Xp<-runif(n,a+10,b+10)
num.arcsCSmid.int(Xp,int,t,c)
n<-10
Xp<-runif(n,a,b)
num.arcsCSmid.int(Xp,int,t,c)