inci.matCSstd.tri {pcds} | R Documentation |
Incidence matrix for Central Similarity Proximity Catch Digraphs (CS-PCDs) - standard equilateral triangle case
Description
Returns the incidence matrix for the CS-PCD whose vertices are the given 2D numerical data set, Xp
,
in the standard equilateral triangle T_e=T(v=1,v=2,v=3)=T((0,0),(1,0),(1/2,\sqrt{3}/2))
.
CS proximity region is defined with respect to the standard equilateral triangle
T_e=T(v=1,v=2,v=3)=T((0,0),(1,0),(1/2,\sqrt{3}/2))
and edge regions are based on the center M=(m_1,m_2)
in Cartesian coordinates or M=(\alpha,\beta,\gamma)
in barycentric coordinates in the interior of T_e
;
default is M=(1,1,1)
i.e., the center of mass of T_e
.
Loops are allowed, so the diagonal entries are all equal to 1.
See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).
Usage
inci.matCSstd.tri(Xp, t, M = c(1, 1, 1))
Arguments
Xp |
A set of 2D points which constitute the vertices of the CS-PCD. |
t |
A positive real number which serves as the expansion parameter in CS proximity region. |
M |
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates.
which serves as a center in the interior of the standard equilateral triangle |
Value
Incidence matrix for the CS-PCD with vertices being 2D data set, Xp
and CS proximity
regions are defined in the standard equilateral triangle T_e
with M
-edge regions.
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2014).
“Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering.”
TEST, 23(1), 100-134.
Ceyhan E, Priebe CE, Marchette DJ (2007).
“A new family of random graphs for testing spatial segregation.”
Canadian Journal of Statistics, 35(1), 27-50.
See Also
inci.matCStri
, inci.matCS
and inci.matPEstd.tri
Examples
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)
inc.mat<-inci.matCSstd.tri(Xp,t=1.25,M)
inc.mat
sum(inc.mat)-n
num.arcsCSstd.tri(Xp,t=1.25)
dom.num.greedy(inc.mat) #try also dom.num.exact(inc.mat) #might take a long time for large n
Idom.num.up.bnd(inc.mat,1)