funsPDomNum2PE1D {pcds} | R Documentation |
The functions for probability of domination number
for Proportional Edge Proximity Catch Digraphs
(PE-PCDs) - middle interval case
Description
The function Pdom.num2PE1D
and its auxiliary functions.
Returns for PE-PCD whose vertices are a uniform data set of size
n
in a finite interval
where
stands for the domination number.
The PE proximity region is defined with respect to
with centrality parameter
and expansion parameter
.
To compute the probability for PE-PCD in the 1D case,
we partition the domain
, and compute the probability for each partition
set. The sample size (i.e., number of vertices or data points) is a positive integer,
n
.
Usage
Pdom.num2AI(r, c, n)
Pdom.num2AII(r, c, n)
Pdom.num2AIII(r, c, n)
Pdom.num2AIV(r, c, n)
Pdom.num2A(r, c, n)
Pdom.num2Asym(r, c, n)
Pdom.num2BIII(r, c, n)
Pdom.num2B(r, c, n)
Pdom.num2Bsym(r, c, n)
Pdom.num2CIV(r, c, n)
Pdom.num2C(r, c, n)
Pdom.num2Csym(r, c, n)
Pdom.num2PE1D(r, c, n)
Arguments
r |
A positive real number which serves as the expansion parameter in PE proximity region;
must be |
c |
A positive real number in |
n |
A positive integer representing the size of the uniform data set. |
Value
domination number
for PE-PCD whose vertices are a uniform data set of size
n
in a finite
interval
Auxiliary Functions for Pdom.num2PE1D
The auxiliary functions are Pdom.num2AI, Pdom.num2AII, Pdom.num2AIII, Pdom.num2AIV, Pdom.num2A, Pdom.num2Asym, Pdom.num2BIII, Pdom.num2B, Pdom.num2B,
Pdom.num2Bsym, Pdom.num2CIV, Pdom.num2C
, and Pdom.num2Csym
, each corresponding to a partition of the domain of
r
and c
. In particular, the domain partition is handled in 3 cases as
CASE A:
CASE B: and
CASE C: .
Case A -
In Case A, we compute with
Pdom.num2AIV(r,c,n)
if ;
Pdom.num2AIII(r,c,n)
if ;
Pdom.num2AII(r,c,n)
if ;
and Pdom.num2AI(r,c,n)
otherwise.
Pdom.num2A(r,c,n)
combines these functions in Case A: .
Due to the symmetry in the PE proximity regions, we use
Pdom.num2Asym(r,c,n)
for in
with the same auxiliary functions
Pdom.num2AIV(r,1-c,n)
if ;
Pdom.num2AIII(r,1-c,n)
if ;
Pdom.num2AII(r,1-c,n)
if ;
and Pdom.num2AI(r,1-c,n)
otherwise.
Case B -
In Case B, we compute with
Pdom.num2AIV(r,c,n)
if ;
Pdom.num2BIII(r,c,n)
if ;
Pdom.num2AII(r,c,n)
if ;
and Pdom.num2AI(r,c,n)
otherwise.
Pdom.num2B(r,c,n)
combines these functions in Case B: .
Due to the symmetry in the PE proximity regions,
we use
Pdom.num2Bsym(r,c,n)
for c
in
with the same auxiliary functions
Pdom.num2AIV(r,1-c,n)
if ;
Pdom.num2BIII(r,1-c,n)
if ;
Pdom.num2AII(r,1-c,n)
if ;
and Pdom.num2AI(r,1-c,n)
otherwise.
Case C -
In Case C, we compute with
Pdom.num2AIV(r,c,n)
if ;
Pdom.num2BIII(r,c,n)
if ;
Pdom.num2CIV(r,c,n)
if ;
Pdom.num2BIII(r,c,n)
if ;
Pdom.num2AII(r,c,n)
if ;
and Pdom.num2AI(r,c,n)
otherwise.
Pdom.num2C(r,c,n)
combines these functions in Case C: .
Due to the symmetry in the PE proximity regions,
we use
Pdom.num2Csym(r,c,n)
for
with the same auxiliary functions
Pdom.num2AIV(r,1-c,n)
if ;
Pdom.num2BIII(r,1-c,n)
if ;
Pdom.num2CIV(r,1-c,n)
if ;
Pdom.num2BIII(r,1-c,n)
if ;
Pdom.num2AII(r,1-c,n)
if ;
and Pdom.num2AI(r,1-c,n)
otherwise.
Combining Cases A, B, and C, we get our main function Pdom.num2PE1D
which computes
for any (
r,c
) in its domain.
Author(s)
Elvan Ceyhan
See Also
Pdom.num2PEtri
and Pdom.num2PE1Dasy
Examples
#Examples for the main function Pdom.num2PE1D
r<-2
c<-.5
Pdom.num2PE1D(r,c,n=10)
Pdom.num2PE1D(r=1.5,c=1/1.5,n=100)