funsMuVarPE1D {pcds} | R Documentation |
Returns the mean and (asymptotic) variance of arc density of Proportional Edge Proximity Catch Digraph (PE-PCD) for 1D data - middle interval case
Description
The functions muPE1D
and asy.varPE1D
and their auxiliary functions.
muPE1D
returns the mean of the (arc) density of PE-PCD
and asy.varPE1D
returns the (asymptotic) variance of the arc density of PE-PCD
for a given centrality parameter c \in (0,1)
and an expansion parameter r \ge 1
and for 1D uniform data in a
finite interval (a,b)
, i.e., data from U(a,b)
distribution.
muPE1D
uses auxiliary (internal) function mu1PE1D
which yields mean (i.e., expected value)
of the arc density of PE-PCD for a given c \in (0,1/2)
and r \ge 1
.
asy.varPE1D
uses auxiliary (internal) functions fvar1
which yields asymptotic variance
of the arc density of PE-PCD for c \in (1/4,1/2)
and r \ge 1
; and fvar2
which yields asymptotic variance
of the arc density of PE-PCD for c \in (0,1/4)
and r \ge 1
.
See also (Ceyhan (2012)).
Usage
mu1PE1D(r, c)
muPE1D(r, c)
fvar1(r, c)
fvar2(r, c)
asy.varPE1D(r, c)
Arguments
r |
A positive real number which serves as the expansion parameter in PE proximity region;
must be |
c |
A positive real number in |
Value
muPE1D
returns the mean and asy.varPE1D
returns the asymptotic variance of the
arc density of PE-PCD for U(a,b)
data
Author(s)
Elvan Ceyhan
References
Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.
See Also
muCS1D
and asy.varCS1D
Examples
#Examples for muPE1D
muPE1D(1.2,.4)
muPE1D(1.2,.6)
rseq<-seq(1.01,5,by=.1)
cseq<-seq(0.01,.99,by=.1)
lrseq<-length(rseq)
lcseq<-length(cseq)
mu.grid<-matrix(0,nrow=lrseq,ncol=lcseq)
for (i in 1:lrseq)
for (j in 1:lcseq)
{
mu.grid[i,j]<-muPE1D(rseq[i],cseq[j])
}
persp(rseq,cseq,mu.grid, xlab="r", ylab="c", zlab="mu(r,c)", theta = -30, phi = 30,
expand = 0.5, col = "lightblue", ltheta = 120, shade = 0.05, ticktype = "detailed")
#Examples for asy.varPE1D
asy.varPE1D(1.2,.8)
rseq<-seq(1.01,5,by=.1)
cseq<-seq(0.01,.99,by=.1)
lrseq<-length(rseq)
lcseq<-length(cseq)
var.grid<-matrix(0,nrow=lrseq,ncol=lcseq)
for (i in 1:lrseq)
for (j in 1:lcseq)
{
var.grid[i,j]<-asy.varPE1D(rseq[i],cseq[j])
}
persp(rseq,cseq,var.grid, xlab="r", ylab="c", zlab="var(r,c)", theta = -30, phi = 30,
expand = 0.5, col = "lightblue", ltheta = 120, shade = 0.05, ticktype = "detailed")