fr2vertsCCvert.reg {pcds} | R Documentation |
The furthest points in a data set from vertices
in each CC
-vertex region in a triangle
Description
An object of class "Extrema"
.
Returns the furthest data points among the data set, Xp
,
in each CC
-vertex region from the vertex in the
triangle, tri
=T(A,B,C)
.
Vertex region labels/numbers correspond
to the row number of the vertex in tri
.
ch.all.intri
is for checking
whether all data points are inside tri
(default is FALSE
).
If some of the data points are not
inside tri
and ch.all.intri=TRUE
,
then the function yields
an error message.
If some of the data points are not inside tri
and ch.all.intri=FALSE
, then the function yields
the closest points to edges among the data points
inside tri
(yields NA
if there are no data points
inside tri
).
See also (Ceyhan (2005, 2012)).
Usage
fr2vertsCCvert.reg(Xp, tri, ch.all.intri = FALSE)
Arguments
Xp |
A set of 2D points representing the set of data points. |
tri |
A |
ch.all.intri |
A logical argument (default= |
Value
A list
with the elements
txt1 |
Vertex labels are |
txt2 |
A short description of the distances
as |
type |
Type of the extrema points |
desc |
A short description of the extrema points |
mtitle |
The |
ext |
The extrema points, here,
furthest points from vertices in each |
X |
The input data, |
num.points |
The number of data points, i.e., size of |
supp |
Support of the data points, here,
it is the triangle |
cent |
The center point used for construction of edge regions. |
ncent |
Name of the center, |
regions |
CC-Vertex regions inside the triangle, |
region.names |
Names of the vertex regions
as |
region.centers |
Centers of mass of the vertex regions
inside |
dist2ref |
Distances from furthest points in each vertex region to the corresponding vertex |
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2012).
“An investigation of new graph invariants related to the domination number of random proximity catch digraphs.”
Methodology and Computing in Applied Probability, 14(2), 299-334.
See Also
fr2vertsCCvert.reg.basic.tri
, fr2edgesCMedge.reg.std.tri
,
kfr2vertsCCvert.reg.basic.tri
and kfr2vertsCCvert.reg
Examples
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20
set.seed(1)
Xp<-runif.tri(n,Tr)$g
Ext<-fr2vertsCCvert.reg(Xp,Tr)
Ext
summary(Ext)
plot(Ext)
f2v<-Ext
CC<-circumcenter.tri(Tr) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,xlab="",asp=1,ylab="",pch=".",
main="Furthest Points in CC-Vertex Regions \n from the Vertices",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp)
points(rbind(f2v$ext),pch=4,col=2)
txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.06,.08,.05,.12,-.1,-.1,-.09)
yc<-txt[,2]+c(.02,-.02,.05,.0,.02,.06,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)
Xp2<-rbind(Xp,c(.2,.4))
fr2vertsCCvert.reg(Xp2,Tr,ch.all.intri = FALSE)
#gives an error message if ch.all.intri = TRUE
#since not all points in the data set are in the triangle