| fr2edgesCMedge.reg.std.tri {pcds} | R Documentation | 
The furthest points in a data set from edges
in each CM-edge region in the standard equilateral triangle
Description
An object of class "Extrema".
Returns the furthest data points among the data set, Xp,
in each CM-edge region from the edge in the
standard equilateral triangle
T_e=T(A=(0,0),B=(1,0),C=(1/2,\sqrt{3}/2)).
ch.all.intri is for checking
whether all data points are inside T_e (default is FALSE).
See also (Ceyhan (2005)).
Usage
fr2edgesCMedge.reg.std.tri(Xp, ch.all.intri = FALSE)
Arguments
| Xp | A set of 2D points,
some could be inside and some could be outside standard equilateral triangle
 | 
| ch.all.intri | A logical argument used
for checking whether all data points are inside  | 
Value
A list with the elements
| txt1 | Edge labels as  | 
| txt2 | A short description of the distances
as  | 
| type | Type of the extrema points | 
| desc | A short description of the extrema points | 
| mtitle | The  | 
| ext | The extrema points, here, furthest points from edges in each edge region. | 
| X | The input data,  | 
| num.points | The number of data points, i.e., size of  | 
| supp | Support of the data points, here, it is  | 
| cent | The center point used for construction of edge regions. | 
| ncent | Name of the center,  | 
| regions | Edge regions inside the triangle,  | 
| region.names | Names of the edge regions
as  | 
| region.centers | Centers of mass of the edge regions
inside  | 
| dist2ref | Distances from furthest points in each edge region to the corresponding edge. | 
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
See Also
fr2vertsCCvert.reg.basic.tri, fr2vertsCCvert.reg,
fr2vertsCCvert.reg.basic.tri, kfr2vertsCCvert.reg,
and cl2edges.std.tri
Examples
n<-20
Xp<-runif.std.tri(n)$gen.points
Ext<-fr2edgesCMedge.reg.std.tri(Xp)
Ext
summary(Ext)
plot(Ext,asp=1)
ed.far<-Ext
Xp2<-rbind(Xp,c(.8,.8))
fr2edgesCMedge.reg.std.tri(Xp2)
fr2edgesCMedge.reg.std.tri(Xp2,ch.all.intri = FALSE)
#gives error if ch.all.intri = TRUE
A<-c(0,0); B<-c(1,0); C<-c(0.5,sqrt(3)/2);
Te<-rbind(A,B,C)
CM<-(A+B+C)/3
p1<-(A+B)/2
p2<-(B+C)/2
p3<-(A+C)/2
Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",xlab="",ylab="",
main="Furthest Points in CM-Edge Regions \n of Std Equilateral Triangle from its Edges",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
L<-Te; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp,xlab="",ylab="")
points(ed.far$ext,pty=2,pch=4,col="red")
txt<-rbind(Te,CM,p1,p2,p3)
xc<-txt[,1]+c(-.03,.03,.03,-.06,0,0,0)
yc<-txt[,2]+c(.02,.02,.02,.02,0,0,0)
txt.str<-c("A","B","C","CM","re=2","re=3","re=1")
text(xc,yc,txt.str)