cl2edgesCCvert.reg {pcds} | R Documentation |
The closest points in a data set to edges
in each CC
-vertex region in a triangle
Description
An object of class "Extrema"
.
Returns the closest data points among the data set, Xp
,
to edge j
in CC
-vertex region j
for j=1,2,3
in the triangle, tri
=T(A,B,C)
,
where CC
stands for circumcenter.
Vertex labels are A=1
, B=2
, and C=3
,
and corresponding edge labels are BC=1
, AC=2
, and AB=3
.
Function yields NA
if there are no data points in a CC
-vertex region.
See also (Ceyhan (2005, 2010)).
Usage
cl2edgesCCvert.reg(Xp, tri)
Arguments
Xp |
A set of 2D points representing the set of data points. |
tri |
A |
Value
A list
with the elements
txt1 |
Vertex labels are |
txt2 |
A short description of the distances
as |
type |
Type of the extrema points |
desc |
A short description of the extrema points |
mtitle |
The |
ext |
The extrema points, here, closest points to edges in the respective vertex region. |
ind.ext |
Indices of the extrema points, |
X |
The input data, |
num.points |
The number of data points,
i.e., size of |
supp |
Support of the data points,
here, it is |
cent |
The center point used for construction of vertex regions |
ncent |
Name of the center, |
regions |
Vertex regions inside the triangle, |
region.names |
Names of the vertex regions
as |
region.centers |
Centers of mass of the vertex regions
inside |
dist2ref |
Distances of closest points in the vertex regions to corresponding edges |
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2010).
“Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.
See Also
cl2edges.vert.reg.basic.tri
, cl2edgesCMvert.reg
,
cl2edgesMvert.reg
, and cl2edges.std.tri
Examples
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-20 #try also n<-100
set.seed(1)
Xp<-runif.tri(n,Tr)$g
Ext<-cl2edgesCCvert.reg(Xp,Tr)
Ext
summary(Ext)
plot(Ext)
cl2e<-Ext
CC<-circumcenter.tri(Tr);
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tr[,1],Xp[,1],CC[1])
Ylim<-range(Tr[,2],Xp[,2],CC[2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,asp=1,pch=".",xlab="",ylab="",
main="Closest Points in CC-Vertex Regions \n to the Opposite Edges",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
xc<-Tr[,1]+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02,.02,.04)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)
points(Xp,pch=1,col=1)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(cl2e$ext,pch=3,col=2)
txt<-rbind(CC,Ds)
xc<-txt[,1]+c(-.04,.04,-.03,0)
yc<-txt[,2]+c(-.05,.04,.06,-.08)
txt.str<-c("CC","D1","D2","D3")
text(xc,yc,txt.str)