| cl2edges.std.tri {pcds} | R Documentation |
The closest points in a data set to edges in the standard equilateral triangle
Description
An object of class "Extrema".
Returns the closest points from the 2D data set, Xp,
to the edges in the
standard equilateral triangle
T_e=T(A=(0,0),B=(1,0),C=(1/2,\sqrt{3}/2)).
ch.all.intri is for checking
whether all data points are inside T_e (default is FALSE).
If some of the data points are not inside T_e
and ch.all.intri=TRUE, then the function yields
an error message.
If some of the data points are not inside T_e
and ch.all.intri=FALSE, then the function yields
the closest points to edges
among the data points inside T_e (yields NA
if there are no data points
inside T_e).
See also (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan and Priebe (2007)).
Usage
cl2edges.std.tri(Xp, ch.all.intri = FALSE)
Arguments
Xp |
A set of 2D points representing the set of data points. |
ch.all.intri |
A logical argument (default= |
Value
A list with the elements
txt1 |
Edge labels as |
txt2 |
A short description of the distances
as |
type |
Type of the extrema points |
desc |
A short description of the extrema points |
mtitle |
The |
ext |
The extrema points, i.e., closest points to edges |
X |
The input data, |
num.points |
The number of data points, i.e., size of |
supp |
Support of the data points, i.e.,
the standard equilateral triangle |
cent |
The center point used for construction of edge regions,
not required for this extrema,
hence it is |
ncent |
Name of the center, |
regions |
Edge regions inside the triangle, |
region.names |
Names of the edge regions,
not required for this extrema,
hence it is |
region.centers |
Centers of mass of the edge regions inside |
dist2ref |
Distances from closest points in each edge region to the corresponding edge |
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E, Priebe CE (2007).
“On the Distribution of the Domination Number of a New Family of Parametrized Random Digraphs.”
Model Assisted Statistics and Applications, 1(4), 231-255.
Ceyhan E, Priebe CE, Wierman JC (2006).
“Relative density of the random r-factor proximity catch digraphs for testing spatial patterns of segregation and association.”
Computational Statistics & Data Analysis, 50(8), 1925-1964.
See Also
cl2edges.vert.reg.basic.tri, cl2edgesMvert.reg,
cl2edgesCMvert.reg and fr2edgesCMedge.reg.std.tri
Examples
n<-20 #try also n<-100
Xp<-runif.std.tri(n)$gen.points
Ext<-cl2edges.std.tri(Xp)
Ext
summary(Ext)
plot(Ext,asp=1)
ed.clo<-Ext
A<-c(0,0); B<-c(1,0); C<-c(0.5,sqrt(3)/2);
Te<-rbind(A,B,C)
CM<-(A+B+C)/3
p1<-(A+B)/2
p2<-(B+C)/2
p3<-(A+C)/2
Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),
ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp,xlab="",ylab="")
points(ed.clo$ext,pty=2,pch=4,col="red")
txt<-rbind(Te,p1,p2,p3)
xc<-txt[,1]+c(-.03,.03,.03,0,0,0)
yc<-txt[,2]+c(.02,.02,.02,0,0,0)
txt.str<-c("A","B","C","re=1","re=2","re=3")
text(xc,yc,txt.str)