cl2CCvert.reg {pcds} | R Documentation |
The closest points to circumcenter in each CC
-vertex region
in a triangle
Description
An object of class "Extrema"
.
Returns the closest data points among the data set, Xp
,
to circumcenter, CC
, in each CC
-vertex region
in the triangle tri
=T(A,B,C)=
(vertex 1,vertex 2,vertex 3).
ch.all.intri
is for checking whether all data points are
inside tri
(default is FALSE
).
If some of the data points are not inside tri
and ch.all.intri=TRUE
, then the function yields
an error message.
If some of the data points are not inside tri
and ch.all.intri=FALSE
, then the function yields
the closest points to CC
among the data points
in each CC
-vertex region of tri
(yields NA
if
there are no data points inside tri
).
See also (Ceyhan (2005, 2012)).
Usage
cl2CCvert.reg(Xp, tri, ch.all.intri = FALSE)
Arguments
Xp |
A set of 2D points representing the set of data points. |
tri |
A |
ch.all.intri |
A logical argument (default= |
Value
A list
with the elements
txt1 |
Vertex labels are |
txt2 |
A short description of the distances
as |
type |
Type of the extrema points |
mtitle |
The |
ext |
The extrema points, here,
closest points to |
X |
The input data, |
num.points |
The number of data points, i.e., size of |
supp |
Support of the data points,
here, it is |
cent |
The center point used for construction of vertex regions |
ncent |
Name of the center, |
regions |
Vertex regions inside the triangle, |
region.names |
Names of the vertex regions
as |
region.centers |
Centers of mass of the vertex regions
inside |
dist2ref |
Distances from closest points
in each |
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2012).
“An investigation of new graph invariants related to the domination number of random proximity catch digraphs.”
Methodology and Computing in Applied Probability, 14(2), 299-334.
See Also
cl2CCvert.reg.basic.tri
, cl2edges.vert.reg.basic.tri
,
cl2edgesMvert.reg
, cl2edgesCMvert.reg
,
and fr2edgesCMedge.reg.std.tri
Examples
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20
set.seed(1)
Xp<-runif.tri(n,Tr)$g
Ext<-cl2CCvert.reg(Xp,Tr)
Ext
summary(Ext)
plot(Ext)
c2CC<-Ext
CC<-circumcenter.tri(Tr) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",asp=1,xlab="",ylab="",
main="Closest Points in CC-Vertex Regions \n to the Circumcenter",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(c2CC$ext,pch=4,col=2)
txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.07,.08,.06,.12,-.1,-.1,-.09)
yc<-txt[,2]+c(.02,-.02,.03,.0,.02,.06,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)
Xp2<-rbind(Xp,c(.2,.4))
cl2CCvert.reg(Xp2,Tr,ch.all.intri = FALSE)
#gives an error message if ch.all.intri = TRUE since not all points are in the triangle