cl2CCvert.reg.basic.tri {pcds} | R Documentation |
The closest points to circumcenter in each
-vertex region
in a standard basic triangle
Description
An object of class "Extrema"
.
Returns the closest data points among the data set, Xp
,
to circumcenter, , in each
-vertex region
in the standard basic triangle
(vertex 1,vertex 2,vertex 3).
ch.all.intri
is for
checking whether all data points are inside
(default is
FALSE
).
See also (Ceyhan (2005, 2012)).
Usage
cl2CCvert.reg.basic.tri(Xp, c1, c2, ch.all.intri = FALSE)
Arguments
Xp |
A set of 2D points representing the set of data points. |
c1 , c2 |
Positive real numbers
which constitute the vertex of the standard basic triangle.
adjacent to the shorter edges; |
ch.all.intri |
A logical argument for
checking whether all data points are inside |
Value
A list
with the elements
txt1 |
Vertex labels are |
txt2 |
A short description of the distances
as |
type |
Type of the extrema points |
mtitle |
The |
ext |
The extrema points, here,
closest points to |
X |
The input data, |
num.points |
The number of data points, i.e., size of |
supp |
Support of the data points, here, it is |
cent |
The center point used for construction of vertex regions |
ncent |
Name of the center, |
regions |
Vertex regions inside the triangle, |
region.names |
Names of the vertex regions
as |
region.centers |
Centers of mass of the vertex regions
inside |
dist2ref |
Distances from closest points in each vertex region to CC. |
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2012).
“An investigation of new graph invariants related to the domination number of random proximity catch digraphs.”
Methodology and Computing in Applied Probability, 14(2), 299-334.
See Also
cl2CCvert.reg
, cl2edges.vert.reg.basic.tri
,
cl2edgesMvert.reg
, cl2edgesCMvert.reg
,
and fr2edgesCMedge.reg.std.tri
Examples
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)
n<-15
set.seed(1)
Xp<-runif.basic.tri(n,c1,c2)$g
Ext<-cl2CCvert.reg.basic.tri(Xp,c1,c2)
Ext
summary(Ext)
plot(Ext)
c2CC<-Ext
CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",asp=1,xlab="",ylab="",
main="Closest Points in CC-Vertex Regions \n to the Circumcenter",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp)
points(c2CC$ext,pch=4,col=2)
txt<-rbind(Tb,CC,Ds)
xc<-txt[,1]+c(-.03,.03,.02,.07,.06,-.05,.01)
yc<-txt[,2]+c(.02,.02,.03,-.01,.03,.03,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)
Xp2<-rbind(Xp,c(.2,.4))
cl2CCvert.reg.basic.tri(Xp2,c1,c2,ch.all.intri = FALSE)
#gives an error message if ch.all.intri = TRUE
#since not all points are in the standard basic triangle