cl2CCvert.reg.basic.tri {pcds} | R Documentation |
The closest points to circumcenter in each CC
-vertex region
in a standard basic triangle
Description
An object of class "Extrema"
.
Returns the closest data points among the data set, Xp
,
to circumcenter, CC
, in each CC
-vertex region
in the standard basic triangle
T_b = T(A=(0,0),B=(1,0),C=(c_1,c_2))=
(vertex 1,vertex 2,vertex 3).
ch.all.intri
is for
checking whether all data points are inside T_b
(default is FALSE
).
See also (Ceyhan (2005, 2012)).
Usage
cl2CCvert.reg.basic.tri(Xp, c1, c2, ch.all.intri = FALSE)
Arguments
Xp |
A set of 2D points representing the set of data points. |
c1 , c2 |
Positive real numbers
which constitute the vertex of the standard basic triangle.
adjacent to the shorter edges; |
ch.all.intri |
A logical argument for
checking whether all data points are inside |
Value
A list
with the elements
txt1 |
Vertex labels are |
txt2 |
A short description of the distances
as |
type |
Type of the extrema points |
mtitle |
The |
ext |
The extrema points, here,
closest points to |
X |
The input data, |
num.points |
The number of data points, i.e., size of |
supp |
Support of the data points, here, it is |
cent |
The center point used for construction of vertex regions |
ncent |
Name of the center, |
regions |
Vertex regions inside the triangle, |
region.names |
Names of the vertex regions
as |
region.centers |
Centers of mass of the vertex regions
inside |
dist2ref |
Distances from closest points in each vertex region to CC. |
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2012).
“An investigation of new graph invariants related to the domination number of random proximity catch digraphs.”
Methodology and Computing in Applied Probability, 14(2), 299-334.
See Also
cl2CCvert.reg
, cl2edges.vert.reg.basic.tri
,
cl2edgesMvert.reg
, cl2edgesCMvert.reg
,
and fr2edgesCMedge.reg.std.tri
Examples
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)
n<-15
set.seed(1)
Xp<-runif.basic.tri(n,c1,c2)$g
Ext<-cl2CCvert.reg.basic.tri(Xp,c1,c2)
Ext
summary(Ext)
plot(Ext)
c2CC<-Ext
CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",asp=1,xlab="",ylab="",
main="Closest Points in CC-Vertex Regions \n to the Circumcenter",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp)
points(c2CC$ext,pch=4,col=2)
txt<-rbind(Tb,CC,Ds)
xc<-txt[,1]+c(-.03,.03,.02,.07,.06,-.05,.01)
yc<-txt[,2]+c(.02,.02,.03,-.01,.03,.03,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)
Xp2<-rbind(Xp,c(.2,.4))
cl2CCvert.reg.basic.tri(Xp2,c1,c2,ch.all.intri = FALSE)
#gives an error message if ch.all.intri = TRUE
#since not all points are in the standard basic triangle