Idom.setCSstd.tri {pcds} | R Documentation |
The indicator for the set of points S
being a dominating set or not for Central Similarity Proximity
Catch Digraphs (CS-PCDs) - standard equilateral triangle case
Description
Returns I(
S
a dominating set of the CS-PCD)
where the vertices of the CS-PCD are the data set Xp
), that is,
returns 1 if S
is a dominating set of CS-PCD, returns 0 otherwise.
CS proximity region is constructed
with respect to the standard equilateral triangle T_e=T(A,B,C)=T((0,0),(1,0),(1/2,\sqrt{3}/2))
with
expansion parameter t>0
and edge regions are based on the center M=(m_1,m_2)
in Cartesian coordinates or M=(\alpha,\beta,\gamma)
in barycentric coordinates in the interior of T_e
;
default is M=(1,1,1)
i.e., the center of mass of T_e
(which is equivalent to the circumcenter of T_e
).
Edges of T_e
, AB
, BC
, AC
, are also labeled as 3, 1, and 2, respectively.
See also (Ceyhan (2012)).
Usage
Idom.setCSstd.tri(S, Xp, t, M = c(1, 1, 1))
Arguments
S |
A set of 2D points which is to be tested for being a dominating set for the CS-PCDs. |
Xp |
A set of 2D points which constitute the vertices of the CS-PCD. |
t |
A positive real number which serves as the expansion parameter in CS proximity region in the
standard equilateral triangle |
M |
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle |
Value
I(
S
a dominating set of the CS-PCD)
, that is, returns 1 if S
is a dominating set of CS-PCD,
returns 0 otherwise, where CS proximity region is constructed in the standard equilateral triangle T_e
Author(s)
Elvan Ceyhan
References
Ceyhan E (2012). “An investigation of new graph invariants related to the domination number of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2), 299-334.
See Also
Idom.setCStri
and Idom.setPEstd.tri
Examples
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)
t<-.5
S<-rbind(Xp[1,],Xp[2,])
Idom.setCSstd.tri(S,Xp,t,M)
S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,])
Idom.setCSstd.tri(S,Xp,t,M)