Idom.num2ASbasic.tri {pcds} | R Documentation |
The indicator for two points being a dominating set for Arc Slice Proximity Catch Digraphs (AS-PCDs) - standard basic triangle case
Description
Returns I(
{p1,p2
} is a dominating set of AS-PCD)
where vertices of AS-PCD are the 2D
data set Xp
), that is, returns 1 if {p1,p2
} is a dominating set of AS-PCD, returns 0 otherwise.
AS proximity regions are defined with respect to the standard basic triangle T_b=T(c(0,0),c(1,0),c(c1,c2))
,
In the standard basic triangle, T_b
, c_1
is in [0,1/2]
, c_2>0
and (1-c_1)^2+c_2^2 \le 1
.
Any given triangle can be mapped to the standard basic triangle by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence standard basic triangle is useful for simulation studies under the uniformity hypothesis.
Point, p1
, is in the vertex region of vertex rv1
(default is NULL
)
and point, p2
, is in the vertex region of vertex rv2
(default is NULL
); vertices are labeled as 1,2,3
in the order they are stacked row-wise.
Vertex regions are based on the center, M=(m_1,m_2)
in Cartesian coordinates
or M=(\alpha,\beta,\gamma)
in barycentric coordinates
in the interior of the standard basic triangle T_b
or based on circumcenter of T_b
;
default is M="CC"
, i.e., circumcenter of T_b
.
ch.data.pnts
is for checking whether points p1
and p2
are data points in Xp
or not
(default is FALSE
), so by default this function checks whether the points p1
and p2
would be a
dominating set if they actually were in the data set.
See also (Ceyhan (2005, 2010)).
Usage
Idom.num2ASbasic.tri(
p1,
p2,
Xp,
c1,
c2,
M = "CC",
rv1 = NULL,
rv2 = NULL,
ch.data.pnts = FALSE
)
Arguments
p1 , p2 |
Two 2D points to be tested for constituting a dominating set of the AS-PCD. |
Xp |
A set of 2D points which constitutes the vertices of the AS-PCD. |
c1 , c2 |
Positive real numbers which constitute the vertex of the standard basic triangle
adjacent to the shorter edges; |
M |
The center of the triangle. |
rv1 , rv2 |
The indices of the vertices whose regions contains |
ch.data.pnts |
A logical argument for checking whether points |
Value
I(
{p1,p2
} is a dominating set of the AS-PCD)
where the vertices of AS-PCD are the 2D data set Xp
),
that is, returns 1 if {p1,p2
} is a dominating set of AS-PCD, returns 0 otherwise
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2010).
“Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.
Ceyhan E (2012).
“An investigation of new graph invariants related to the domination number of random proximity catch digraphs.”
Methodology and Computing in Applied Probability, 14(2), 299-334.
See Also
Examples
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)
n<-10
set.seed(1)
Xp<-runif.basic.tri(n,c1,c2)$g
M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.2)
Idom.num2ASbasic.tri(Xp[1,],Xp[2,],Xp,c1,c2,M)
Idom.num2ASbasic.tri(Xp[1,],Xp[1,],Xp,c1,c2,M) #one point can not a dominating set of size two
Idom.num2ASbasic.tri(c(.2,.4),c(.2,.5),rbind(c(.2,.4),c(.2,.5)),c1,c2,M)
ind.gam2<-vector()
for (i in 1:(n-1))
for (j in (i+1):n)
{if (Idom.num2ASbasic.tri(Xp[i,],Xp[j,],Xp,c1,c2,M)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}
ind.gam2
#or try
rv1<-rel.vert.basic.triCC(Xp[1,],c1,c2)$rv
rv2<-rel.vert.basic.triCC(Xp[2,],c1,c2)$rv
Idom.num2ASbasic.tri(Xp[1,],Xp[2,],Xp,c1,c2,M,rv1,rv2)
Idom.num2ASbasic.tri(c(.2,.4),Xp[2,],Xp,c1,c2,M,rv1,rv2)
#or try
rv1<-rel.vert.basic.triCC(Xp[1,],c1,c2)$rv
Idom.num2ASbasic.tri(Xp[1,],Xp[2,],Xp,c1,c2,M,rv1)
#or try
Rv2<-rel.vert.basic.triCC(Xp[2,],c1,c2)$rv
Idom.num2ASbasic.tri(Xp[1,],Xp[2,],Xp,c1,c2,M,rv2=Rv2)
Idom.num2ASbasic.tri(c(.3,.2),c(.35,.25),Xp,c1,c2,M)