Idom.num1CSt1std.tri {pcds} | R Documentation |
The indicator for a point being a dominating point for Central Similarity Proximity Catch Digraphs
(CS-PCDs) - standard equilateral triangle case with t=1
Description
Returns I(
p
is a dominating point of the CS-PCD)
where the vertices of the CS-PCD are the 2D data set Xp
in the standard equilateral
triangle T_e=T(A,B,C)=T((0,0),(1,0),(1/2,\sqrt{3}/2))
, that is, returns 1 if p
is a dominating point of CS-PCD,
returns 0 otherwise.
Point, p
, is in the edge region of edge re (default is NULL
); vertices are labeled as 1,2,3
in the order they are stacked row-wise in T_e
, and the opposite edges are labeled with label of the vertices
(that is, edge numbering is 1,2
, and 3
for edges AB
, BC
, and AC
).
CS proximity region is constructed with respect to T_e
with expansion parameter t=1
and edge regions are based on center of mass CM=(1/2,\sqrt{3}/6)
.
ch.data.pnt
is for checking whether point p
is a data point in Xp
or not (default is FALSE
), so by default this
function checks whether the point p
would be a dominating point if it actually were in the data set.
See also (Ceyhan (2005, 2010)).
Usage
Idom.num1CSt1std.tri(p, Xp, re = NULL, ch.data.pnt = FALSE)
Arguments
p |
A 2D point that is to be tested for being a dominating point or not of the CS-PCD. |
Xp |
A set of 2D points which constitutes the vertices of the CS-PCD. |
re |
The index of the edge region in |
ch.data.pnt |
A logical argument for checking whether point |
Value
I(
p
is a dominating point of the CS-PCD)
where the vertices of the CS-PCD are the 2D data set Xp
,
that is, returns 1 if p
is a dominating point, returns 0 otherwise.
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2010).
“Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.
Ceyhan E (2012).
“An investigation of new graph invariants related to the domination number of random proximity catch digraphs.”
Methodology and Computing in Applied Probability, 14(2), 299-334.
See Also
Examples
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3
Te<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
Idom.num1CSt1std.tri(Xp[3,],Xp)
Idom.num1CSt1std.tri(c(1,2),c(1,2))
Idom.num1CSt1std.tri(c(1,2),c(1,2),ch.data.pnt = TRUE)
gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1CSt1std.tri(Xp[i,],Xp))}
ind.gam1<-which(gam.vec==1)
ind.gam1
Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Te,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp)
L<-Te; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE);
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)
#rbind is to insert the points correctly if there is only one dominating point
txt<-rbind(Te,CM)
xc<-txt[,1]+c(-.02,.02,.01,.05)
yc<-txt[,2]+c(.02,.02,.03,.02)
txt.str<-c("A","B","C","CM")
text(xc,yc,txt.str)