Idom.num1AStri {pcds} | R Documentation |
The indicator for a point being a dominating point for Arc Slice Proximity Catch Digraphs (AS-PCDs) - one triangle case
Description
Returns I(p
is a dominating point of the AS-PCD whose vertices are the 2D data set Xp
),
that is, returns 1 if p
is a dominating point of AS-PCD, returns 0 otherwise.
Point, p
, is in the region of vertex rv
(default is NULL
); vertices are labeled as
in the order they are stacked row-wise in
tri
.
AS proximity regions are defined with respect to the
triangle tri
and vertex regions are based on the center, in Cartesian coordinates
or
in barycentric coordinates
in the interior of the triangle
tri
or based on circumcenter of tri
;
default is M="CC"
, i.e., circumcenter of tri
.
ch.data.pnt
is for checking whether point p
is a data point in Xp
or not (default is FALSE
),
so by default this function checks whether the point p
would be a dominating point
if it actually were in the data set.
See also (Ceyhan (2005, 2010)).
Usage
Idom.num1AStri(p, Xp, tri, M = "CC", rv = NULL, ch.data.pnt = FALSE)
Arguments
p |
A 2D point that is to be tested for being a dominating point or not of the AS-PCD. |
Xp |
A set of 2D points which constitutes the vertices of the AS-PCD. |
tri |
Three 2D points, stacked row-wise, each row representing a vertex of the triangle. |
M |
The center of the triangle. |
rv |
Index of the vertex whose region contains point |
ch.data.pnt |
A logical argument for checking whether point |
Value
I(p
is a dominating point of the AS-PCD whose vertices are the 2D data set Xp
),
that is, returns 1 if p
is a dominating point of the AS-PCD, returns 0 otherwise
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2010).
“Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.
Ceyhan E (2012).
“An investigation of new graph invariants related to the domination number of random proximity catch digraphs.”
Methodology and Computing in Applied Probability, 14(2), 299-334.
See Also
Examples
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)
Idom.num1AStri(Xp[1,],Xp,Tr,M)
Idom.num1AStri(Xp[1,],Xp[1,],Tr,M)
Idom.num1AStri(c(1.5,1.5),c(1.6,1),Tr,M)
Idom.num1AStri(c(1.6,1),c(1.5,1.5),Tr,M)
gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1AStri(Xp[i,],Xp,Tr,M))}
ind.gam1<-which(gam.vec==1)
ind.gam1
#or try
Rv<-rel.vert.triCC(Xp[1,],Tr)$rv
Idom.num1AStri(Xp[1,],Xp,Tr,M,Rv)
Idom.num1AStri(c(.2,.4),Xp,Tr,M)
Idom.num1AStri(c(.2,.4),c(.2,.4),Tr,M)
Xp2<-rbind(Xp,c(.2,.4))
Idom.num1AStri(Xp[1,],Xp2,Tr,M)
if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates
CC<-circumcenter.tri(Tr) #the circumcenter
if (isTRUE(all.equal(M,CC)) || identical(M,"CC"))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges(Tr,M)
}
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp)
L<-rbind(cent,cent,cent); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)
txt<-rbind(Tr,cent,Ds)
xc<-txt[,1]
yc<-txt[,2]
txt.str<-c("A","B","C",cent.name,"D1","D2","D3")
text(xc,yc,txt.str)
Idom.num1AStri(c(1.5,1.1),Xp,Tr,M)
Idom.num1AStri(c(1.5,1.1),Xp,Tr,M)
Idom.num1AStri(c(1.5,1.1),Xp,Tr,M,ch.data.pnt=FALSE)
#gives an error message if ch.data.pnt=TRUE since point p is not a data point in Xp