IarcCSmid.int {pcds} | R Documentation |
The indicator for the presence of an arc from a point to another for Central Similarity Proximity Catch Digraphs (CS-PCDs) - middle interval case
Description
Returns I(p_2
in N_{CS}(p_1,t,c))
for points p_1
and p_2
, that is, returns 1 if p_2
is in N_{CS}(p_1,t,c)
, returns 0
otherwise, where N_{CS}(x,t,c)
is the CS proximity region for point x
and is constructed with expansion
parameter t>0
and centrality parameter c \in (0,1)
for the interval (a,b)
.
CS proximity regions are defined with respect to the middle interval int
and vertex regions are based
on the center associated with the centrality parameter c \in (0,1)
. For the interval, int
=(a,b)
, the
parameterized center is M_c=a+c(b-a)
. rv
is the index of the vertex region p_1
resides, with default=NULL
.
If p_1
and p_2
are distinct and either of them are outside interval int
, it returns 0,
but if they are identical, then it returns 1 regardless of their locations
(i.e., loops are allowed in the digraph).
See also (Ceyhan (2016)).
Usage
IarcCSmid.int(p1, p2, int, t, c = 0.5, rv = NULL)
Arguments
p1 , p2 |
1D points; |
int |
A |
t |
A positive real number which serves as the expansion parameter in CS proximity region. |
c |
A positive real number in |
rv |
Index of the end-interval containing the point, either |
Value
I(p_2
in N_{CS}(p_1,t,c))
for points p_1
and p_2
that is, returns 1 if p_2
is in N_{CS}(p_1,t,c)
,
returns 0 otherwise
Author(s)
Elvan Ceyhan
References
Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity.” REVSTAT, 14(4), 349-394.
See Also
IarcCSend.int
, IarcPEmid.int
, and IarcPEend.int
Examples
c<-.5
t<-2
a<-0; b<-10; int<-c(a,b)
IarcCSmid.int(7,5,int,t,c)
IarcCSmid.int(7,7,int,t,c)
IarcCSmid.int(7,5,int,t,c=.4)
IarcCSmid.int(1,3,int,t,c)
IarcCSmid.int(9,11,int,t,c)
IarcCSmid.int(19,1,int,t,c)
IarcCSmid.int(19,19,int,t,c)
IarcCSmid.int(3,5,int,t,c)
#or try
Rv<-rel.vert.mid.int(3,int,c)$rv
IarcCSmid.int(3,5,int,t,c,rv=Rv)
IarcCSmid.int(7,5,int,t,c)