IarcCSint {pcds} | R Documentation |
The indicator for the presence of an arc from a point to another for Central Similarity Proximity Catch Digraphs (CS-PCDs) - one interval case
Description
Returns I(p_2
in N_{CS}(p_1,t,c))
for points p_1
and p_2
, that is, returns 1 if p_2
is in N_{CS}(p_1,t,c)
,
returns 0 otherwise, where N_{CS}(x,t,c)
is the CS proximity region for point x
with expansion parameter t>0
and centrality parameter c \in (0,1)
.
CS proximity region is constructed with respect to the
interval (a,b)
. This function works whether p_1
and p_2
are inside or outside the interval int
.
Vertex regions for middle intervals are based on the center associated with the centrality parameter
c \in (0,1)
. If p_1
and p_2
are identical, then it returns 1 regardless of their locations
(i.e., loops are allowed in the digraph).
See also (Ceyhan (2016)).
Usage
IarcCSint(p1, p2, int, t, c = 0.5)
Arguments
p1 |
A 1D point for which the proximity region is constructed. |
p2 |
A 1D point for which it is checked whether it resides in the proximity region
of |
int |
A |
t |
A positive real number which serves as the expansion parameter in CS proximity region. |
c |
A positive real number in |
Value
I(p_2
in N_{CS}(p_1,t,c))
for p2, that is, returns 1 if p_2
in N_{CS}(p_1,t,c)
, returns 0 otherwise
Author(s)
Elvan Ceyhan
References
Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity.” REVSTAT, 14(4), 349-394.
See Also
IarcCSmid.int
, IarcCSend.int
and IarcPEint
Examples
c<-.4
t<-2
a<-0; b<-10; int<-c(a,b)
IarcCSint(7,5,int,t,c)
IarcCSint(17,17,int,t,c)
IarcCSint(15,17,int,t,c)
IarcCSint(1,3,int,t,c)
IarcCSint(-17,17,int,t,c)
IarcCSint(3,5,int,t,c)
IarcCSint(3,3,int,t,c)
IarcCSint(4,5,int,t,c)
IarcCSint(a,5,int,t,c)
c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)
IarcCSint(7,5,int,t,c)