| funsMuVarUndPE2D {pcds.ugraph} | R Documentation |
Returns the mean and (asymptotic) variance of edge density of underlying or reflexivity graph of Proportional Edge Proximity Catch Digraph (PE-PCD) for 2D uniform data in one triangle
Description
The mean and (asymptotic) variance functions
for the underlying or reflexivity graph of
Proportional Edge Proximity Catch Digraphs (PE-PCDs):
muOrPE2D and asy.varOrPE2D for the underlying graph
and
muAndPE2D and asy.varAndPE2D for the reflexivity graph.
muOrPE2D and muAndPE2D return the mean of the (edge) density of
the underlying or reflexivity graph of PE-PCDs, respectively,
for 2D uniform data in a triangle.
Similarly,
asy.varOrPE2D and asy.varAndPE2D return the asymptotic variance
of the edge density of the underlying or reflexivity graph of PE-PCDs,
respectively, for 2D uniform data in a triangle.
PE proximity regions are defined with expansion parameter r \ge 1
with respect to the triangle in which the points reside and
vertex regions are based on center of mass, CM of the triangle.
See also (Ceyhan (2016)).
Usage
muOrPE2D(r)
muAndPE2D(r)
mu.undPE2D(r, ugraph = c("underlying", "reflexivity"))
asy.varOrPE2D(r)
asy.varAndPE2D(r)
asy.var.undPE2D(r, ugraph = c("underlying", "reflexivity"))
Arguments
r |
A positive real number which serves
as the expansion parameter in PE proximity region;
must be |
ugraph |
The type of the graph based on PE-PCDs,
|
Value
mu.undPE2D returns the mean
and asy.varUndOrPE2D returns the (asymptotic) variance of the
edge density of the underlying graph of the PE-PCD for
uniform data in any triangle
if ugraph="underlying", and those of the reflexivity graph
if ugraph="reflexivity".
The functions muOrPE2D, muAndPE2D, asy.varOrPE2D,
and asy.varAndPE2D are the corresponding mean
and asymptotic variance functions
for the edge density of the reflexivity graph of the PE-PCD,
respectively, for uniform data in any triangle.
Author(s)
Elvan Ceyhan
References
Ceyhan E (2016). “Edge Density of New Graph Types Based on a Random Digraph Family.” Statistical Methodology, 33, 31-54.
See Also
mu.undCS2D, asy.var.undCS2D,
muPE2D, asy.varPE2D,
muAndCS2D, and asy.varAndCS2D
Examples
#\donttest{
mu.undPE2D(1.2)
mu.undPE2D(1.2,ugraph="r")
rseq<-seq(1.01,5,by=.05)
lrseq<-length(rseq)
muOR = muAND <- vector()
for (i in 1:lrseq)
{
muOR<-c(muOR,mu.undPE2D(rseq[i]))
muAND<-c(muAND,mu.undPE2D(rseq[i],ugraph="r"))
}
plot(rseq, muOR,type="l",xlab="r",ylab=expression(mu(r)),lty=1,
xlim=range(rseq),ylim=c(0,1))
lines(rseq,muAND,type="l",lty=2,col=2)
legend("bottomright", inset=.02,
legend=c(expression(mu[or](r)),expression(mu[and](r))),
lty=1:2,col=1:2)
#}
#\donttest{
asy.var.undPE2D(1.2)
asy.var.undPE2D(1.2,ugraph="r")
rseq<-seq(1.01,5,by=.05)
lrseq<-length(rseq)
avarOR<-avarAND<-vector()
for (i in 1:lrseq)
{
avarOR<-c(avarOR,asy.var.undPE2D(rseq[i]))
avarAND<-c(avarAND,asy.var.undPE2D(rseq[i],ugraph="r"))
}
oldpar <- par(mar=c(5,5,4,2))
plot(rseq, avarAND,type="l",lty=2,col=2,xlab="r",
ylab=expression(paste(sigma^2,"(r)")),xlim=range(rseq))
lines(rseq,avarOR,type="l")
legend(3.75,.02,
legend=c(expression(paste(sigma["underlying"]^"2","(r)")),
expression(paste(sigma["reflexivity"]^"2","(r)")) ),
lty=1:2,col=1:2)
par(oldpar)
#}