funsMuVarUndCS2D {pcds.ugraph} | R Documentation |
Returns the mean and (asymptotic) variance of edge density of underlying or reflexivity graphs of Central Similarity Proximity Catch Digraph (CS-PCD) for 2D uniform data in one triangle
Description
The mean and (asymptotic) variance functions
for the underlying or reflexivity graphs of
Central Similarity Proximity Catch Digraphs (CS-PCDs):
muOrCS2D
and asy.varOrCS2D
for the underlying graph
and
muAndCS2D
and asy.varAndCS2D
for the reflexivity graph.
muOrCS2D
and muAndCS2D
return the mean of the (edge) density of
the underlying or reflexivity graphs of CS-PCDs, respectively,
for 2D uniform data in a triangle.
Similarly, asy.varOrCS2D
and asy.varAndCS2D
return
the asymptotic variance of the edge density of the underlying
or reflexivity graphs of CS-PCDs, respectively,
for 2D uniform data in a triangle.
CS proximity regions are defined with expansion parameter t > 0
with respect to the triangle in which the points reside and
edge regions are based on center of mass, CM
of the triangle.
See also (Ceyhan (2016)).
Usage
muOrCS2D(t)
muAndCS2D(t)
mu.undCS2D(t, ugraph = c("underlying", "reflexivity"))
asy.varOrCS2D(t)
asy.varAndCS2D(t)
asy.var.undCS2D(t, ugraph = c("underlying", "reflexivity"))
Arguments
t |
A positive real number which serves as the expansion parameter in CS proximity region. |
ugraph |
The type of the graph based on CS-PCDs,
|
Value
mu.undCS2D
returns the mean
and asy.varUndOrCS2D
returns the (asymptotic) variance of the
edge density of the underlying graph of the CS-PCD for uniform data in any triangle
if ugraph="underlying"
,
and those of the reflexivity graph if ugraph="reflexivity"
.
The functions muOrCS2D
, muAndCS2D
, asy.varOrCS2D
,
and asy.varAndCS2D
are the corresponding mean
and asymptotic variance functions
for the edge density of the reflexivity graph of the CS-PCD, respectively,
for uniform data in any triangle.
Author(s)
Elvan Ceyhan
References
Ceyhan E (2016). “Edge Density of New Graph Types Based on a Random Digraph Family.” Statistical Methodology, 33, 31-54.
See Also
mu.undCS2D
, asy.var.undCS2D
muCS2D
, and asy.varCS2D
,
Examples
#\donttest{
mu.undCS2D(1.2)
mu.undCS2D(1.2,ugraph="r")
tseq<-seq(0.01,10,by=.05)
ltseq<-length(tseq)
muOR = muAND <- vector()
for (i in 1:ltseq)
{
muOR<-c(muOR,mu.undCS2D(tseq[i]))
muAND<-c(muAND,mu.undCS2D(tseq[i],ugraph="r"))
}
plot(tseq, muOR,type="l",xlab="t",ylab=expression(mu(t)),lty=1,
xlim=range(tseq),ylim=c(0,1))
lines(tseq,muAND,type="l",lty=2,col=2)
legend("bottomright", inset=.02,
legend=c(expression(mu[or](t)),expression(mu[and](t))),
lty=1:2,col=1:2)
#}
#\donttest{
asy.var.undCS2D(1.2)
asy.var.undCS2D(1.2,ugraph="r")
asy.varOrCS2D(.2)
tseq<-seq(.05,25,by=.05)
ltseq<-length(tseq)
avarOR<-avarAND<-vector()
for (i in 1:ltseq)
{
avarOR<-c(avarOR,asy.var.undCS2D(tseq[i]))
avarAND<-c(avarAND,asy.var.undCS2D(tseq[i],ugraph="r"))
}
oldpar <- par(mar=c(5,5,4,2))
plot(tseq, 4*avarAND,type="l",lty=2,col=2,xlab="t",
ylab=expression(paste(sigma^2,"(t)")),xlim=range(tseq))
lines(tseq,4*avarOR,type="l")
legend(18,.1,
legend=c(expression(paste(sigma["underlying"]^"2","(t)")),
expression(paste(sigma["reflexivity"]^"2","(t)")) ),
lty=1:2,col=1:2)
par(oldpar)
#}