rmvnorm.ivent {pcalg} | R Documentation |
Simulate from a Gaussian Causal Model
Description
Produces one or more samples from the observational or an interventional distribution associated to a Gaussian causal model.
Usage
rmvnorm.ivent(n, object, target = integer(0), target.value = numeric(0))
Arguments
n |
Number of samples required. |
object |
An instance of |
target |
Intervention target: vector of intervened nodes. If the vector is empty, samples from the observational distribution are generated. Otherwise, samples from an interventional distribution are simulated. |
target.value |
Values of the intervened variables. If
|
Value
If n = 1
a vector of length p
is returned, where p
denotes the number of nodes of object
. Otherwise an n
by
p
matrix is returned with one sample per row.
Author(s)
Alain Hauser (alain.hauser@bfh.ch)
Examples
set.seed(307)
myDAG <- r.gauss.pardag(5, 0.5)
var(rmvnorm.ivent(n = 1000, myDAG))
myDAG$cov.mat()
var(rmvnorm.ivent(n = 1000, myDAG, target = 1, target.value = 1))
myDAG$cov.mat(target = 1, ivent.var = 0)