plotcov {pcaPP} | R Documentation |
Compare two Covariance Matrices in Plots
Description
allows a direct comparison of two estimations of the covariance matrix (e.g. resulting from covPC) in a plot.
Usage
plotcov(cov1, cov2, method1, labels1, method2, labels2, ndigits, ...)
Arguments
cov1 |
a covariance matrix (from cov, covMcd, covPC, covPCAgrid, covPCAproj, etc. |
cov2 |
a covariance matrix (from cov, covMcd, covPC, covPCAgrid, covPCAproj, etc. |
method1 |
legend for ellipses of estimation method1 |
method2 |
legend for ellipses of estimation method2 |
labels1 |
legend for numbers of estimation method1 |
labels2 |
legend for numbers of estimation method2 |
ndigits |
number of digits to use for printing covariances, by default ndigits=4 |
... |
additional arguments for text or plot |
Details
Since (robust) PCA can be used to re-compute the (robust) covariance matrix,
one might be interested to compare two different methods of covariance
estimation visually. This routine takes as input objects for the covariances
to compare the output of cov
, but also the return objects
from covPCAgrid
, covPCAproj
, covPC
,
and covMcd
. The comparison of the two covariance matrices
is done by numbers (the covariances) and by ellipses.
Value
only the plot is generated
Author(s)
Heinrich Fritz, Peter Filzmoser <P.Filzmoser@tuwien.ac.at>
References
C. Croux, P. Filzmoser, M. Oliveira, (2007). Algorithms for Projection-Pursuit Robust Principal Component Analysis, Chemometrics and Intelligent Laboratory Systems, Vol. 87, pp. 218-225.
See Also
Examples
# multivariate data with outliers
library(mvtnorm)
x <- rbind(rmvnorm(200, rep(0, 6), diag(c(5, rep(1,5)))),
rmvnorm( 15, c(0, rep(20, 5)), diag(rep(1, 6))))
plotcov(covPCAproj(x),covPCAgrid(x))