covPCA {pcaPP} | R Documentation |
Robust Covariance Matrix Estimation
Description
computes the robust covariance matrix using the PCAgrid
and
PCAproj
functions.
Usage
covPCAproj(x, control)
covPCAgrid(x, control)
Arguments
x |
a numeric matrix or data frame which provides the data. |
control |
a list whose elements must be the same as (or a subset of)
the parameters of the appropriate PCA function ( |
Details
The functions covPCAproj
and covPCAgrid
use the functions
PCAproj
and PCAgrid
respectively to estimate
the covariance matrix of the data matrix x
.
Value
cov |
the actual covariance matrix estimated from |
center |
the center of the data |
method |
a string describing the method that was used to calculate the covariance matrix estimation |
Author(s)
Heinrich Fritz, Peter Filzmoser <P.Filzmoser@tuwien.ac.at>
References
C. Croux, P. Filzmoser, M. Oliveira, (2007). Algorithms for Projection-Pursuit Robust Principal Component Analysis, Chemometrics and Intelligent Laboratory Systems, Vol. 87, pp. 218-225.
See Also
Examples
# multivariate data with outliers
library(mvtnorm)
x <- rbind(rmvnorm(200, rep(0, 6), diag(c(5, rep(1,5)))),
rmvnorm( 15, c(0, rep(20, 5)), diag(rep(1, 6))))
covPCAproj(x)
# compare with classical covariance matrix:
cov(x)