MPRM {pcIRT} | R Documentation |
Estimation of Multidimensional Polytomous Rasch model (Rasch, 1961)
Description
This function estimates the multidimensional polytomous Rasch model by Rasch
(1961). The model estimates item category parameters \beta
for each
item and each category and takes each category of data as another dimension.
The functions allows setting linear restrictions on item category parameters \beta
.
Usage
MPRM(data, desmat, ldes, lp, start, control)
## S3 method for class 'MPRM'
print(x, ...)
## S3 method for class 'MPRM'
summary(object, ...)
Arguments
data |
Data matrix or data frame; rows represent observations (persons), columns represent the items |
desmat |
Design matrix |
ldes |
a numeric vector of the same length as the number of item category parameters indicating which parameters are set linear dependent of which other parameters (see details) |
lp |
a numeric vector with length equal to the number of item parameters set linear dependent. The vector indicates the number of scoring parameters (see details) |
start |
Starting values for parameter estimation. If missing, a vector of 0 is used as starting values. |
control |
list with control parameters for the estimation process e.g. the convergence criterion. For details please see the help pages to the R built-in function |
x |
object of class |
... |
... |
object |
object of class |
Details
Parameter estimations is done by CML method.
The parameters of the multidimensional polytomous Rasch model (Rasch, 1961)
are estimated by CML estimation. For the CML estimation no assumption on the
person parameter distribution is necessary. Furthermore linear restrictions can be set on the
multidimensional polytomous Rasch model. Item category parameters can be set
as being linear dependent to other item category parameters and the scoring
parameter (as the multiple of the linear dependen parameters) is estimated.
The restrictions are set by defining the arguments ldes
and
lp
. ldes
is a numerical vector of the same length as item
category parameters in the general MPRM. A 0 in this vector indicates that
no restriction is set. Putting in another number sets the item category
parameter according to the vector position as linear dependent to that item
category parameter with the position of the number included. For example, if
item category parameter of item 1 and category 2 (that is position 2 in the
vector ldes
) should be linear dependent to the item category
parameter of item 1 and category 1 (that is position 1 in the vector
ldes
), than the number 1 has to be on the second element of vector
ldes
. With the vector lp
it is set, how many different scoring
parameters have to be estimated and (if there are more than two) which of
them should be equal. For example if 5 item category parameters are set
linear dependent (by ldes
) and according to the ldes
vector
the first, third and fourth have the same scoring parameters and the second
and fifth have another scoring parameter, than lp
must be a vector
lp = c(1,2,1,1,2)
.
It is necessary that the design matrix is specified in accordance with the
restrictions in ldes
and lp
.
Value
data |
data matrix according to the input |
design |
design matrix according to the input |
logLikelihood |
conditional log-likelihood |
estpar |
estimated basic item category parameters |
estpar_se |
estimated standard errors for basic item category parameters |
itempar |
estimated item category parameters |
itempar_se |
estimated standard errors for item category parameters |
linpar |
estimated scoring parameters |
linpar_se |
estimated standard errors for scoring parameters |
hessian |
Hessian matrix |
convergence |
convergence of solution (see help files in
|
fun_calls |
number of function calls (see help
files in |
Author(s)
Christine Hohensinn
References
Andersen, E. B. (1974). Das mehrkategorielle logistische Testmodell [The polytomous logistic test model] In. W. F. Kempf (Ed.), Probabilistische Modelle in der Sozialpsychologie [Probabilistic model in social psychology]. Bern: Huber.
Fischer, G. H. (1974). Einfuehrung in die Theorie psychologischer Tests [Introduction to test theory]. Bern: Huber.
Rasch, G. (1961). On general laws and the meaning of measurement in psychology, Proceedings Fourth Berekely Symposium on Mathematical Statistiscs and Probability 5, 321-333.
See Also
Examples
#simulate data set according to the general MPRM
simdat <- simMPRM(rbind(matrix(c(-1.5,0.5,0.5,1,0.8,-0.3, 0.2,-1.2),
ncol=4),0), 500)
#estimate the MPRM without any restrictions
res_mprm <- MPRM(simdat$datmat)
#estimate a MPRM with linear restrictions;
#for item 1 and 2 the second category is set linear dependent to the first
#category
ldes1 <- rep(0,length(res_mprm$itempar))
ldes1[c(2,5)] <- c(1,4)
lp1 <- rep(1,2)
#take the design matrix from the general MPRM and modify it according to the
#linear restriction
design1 <- res_mprm$design
design1[2,1] <- 1
design1[5,3] <- 1
design1[11,c(1,3)] <- -1
design1 <- design1[,-c(2,4)]
res_mprm2 <- MPRM(simdat$datmat, desmat=design1, ldes=ldes1, lp=lp1)
summary(res_mprm2)