LRT.DRM {pcIRT} | R Documentation |
Computes Andersen's Likelihood Ratio Test for the multidimensional polytomous Rasch model
Description
Andersen's Likelihood Ratio Test is a model test for Rasch models (based on CML estimation) and splits the data set into subsamples to test the person homogeneity
Usage
## S3 method for class 'DRM'
LRT(object, splitcrit = "score", ...)
## S3 method for class 'MPRM'
LRT(object, splitcrit = "score", ...)
LRT(object, ...)
## S3 method for class 'aLR'
print(x, ...)
## S3 method for class 'aLR'
summary(object, ...)
Arguments
object |
Object of class |
splitcrit |
Vector or the character vector |
x |
Object of class aLR |
... |
further arguments |
Details
The default split criterion "score"
computes the raw score of every
person according to the category values in the data set. The sample is split
by the median of this raw score.
Value
emp_Chi2 |
|
df |
degrees of freedom of the test statistic |
pval |
p value of the test statistic |
itempar |
estimated item parameters for each subsample |
item_se |
estimated standard errors for the item parameters for each subsample |
Author(s)
Christine Hohensinn
References
Andersen, E. B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123- 140.
Fischer, G. H. (1974). Einfuehrung in die Theorie psychologischer Tests [Introduction to test theory]. Bern: Huber.
See Also
Examples
#simulate data set
simdat <- simMPRM(rbind(matrix(c(-1.5,0.5,0.5,1,0.8,-0.3, 0.2,-1.2),
ncol=4),0), 500)
#estimate MPRM item parameters
res_mprm <- MPRM(simdat$datmat)
#compute Andersen's Likelihood Ratio test
res_lrt <- LRT(res_mprm)
summary(res_lrt)