kr-vcovAdj {pbkrtest} | R Documentation |
Adjusted covariance matrix for linear mixed models according to Kenward and Roger
Description
Kenward and Roger (1997) describe an improved small sample approximation to the covariance matrix estimate of the fixed parameters in a linear mixed model.
Usage
vcovAdj(object, details = 0)
## S3 method for class 'lmerMod'
vcovAdj(object, details = 0)
Arguments
object |
An |
details |
If larger than 0 some timing details are printed. |
Value
phiA |
the estimated covariance matrix, this has attributed P, a
list of matrices used in |
SigmaG |
list: Sigma: the covariance matrix of Y; G: the G matrices that
sum up to Sigma; |
Note
If $N$ is the number of observations, then the vcovAdj()
function involves inversion of an $N x N$ matrix, so the computations can
be relatively slow.
Author(s)
Ulrich Halekoh uhalekoh@health.sdu.dk, Søren Højsgaard sorenh@math.aau.dk
References
Ulrich Halekoh, Søren Højsgaard (2014)., A Kenward-Roger Approximation and Parametric Bootstrap Methods for Tests in Linear Mixed Models - The R Package pbkrtest., Journal of Statistical Software, 58(10), 1-30., https://www.jstatsoft.org/v59/i09/
Kenward, M. G. and Roger, J. H. (1997), Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood, Biometrics 53: 983-997.
See Also
getKR
, KRmodcomp
, lmer
,
PBmodcomp
, vcovAdj
Examples
fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
class(fm1)
## Here the adjusted and unadjusted covariance matrices are identical,
## but that is not generally the case:
v1 <- vcov(fm1)
v2 <- vcovAdj(fm1, details=0)
v2 / v1
## For comparison, an alternative estimate of the variance-covariance
## matrix is based on parametric bootstrap (and this is easily
## parallelized):
## Not run:
nsim <- 100
sim <- simulate(fm.ml, nsim)
B <- lapply(sim, function(newy) try(fixef(refit(fm.ml, newresp=newy))))
B <- do.call(rbind, B)
v3 <- cov.wt(B)$cov
v2/v1
v3/v1
## End(Not run)