| machinelearning {paws.machine.learning} | R Documentation |
Amazon Machine Learning
Description
Definition of the public APIs exposed by Amazon Machine Learning
Usage
machinelearning(
config = list(),
credentials = list(),
endpoint = NULL,
region = NULL
)
Arguments
config |
Optional configuration of credentials, endpoint, and/or region.
|
credentials |
Optional credentials shorthand for the config parameter
|
endpoint |
Optional shorthand for complete URL to use for the constructed client. |
region |
Optional shorthand for AWS Region used in instantiating the client. |
Value
A client for the service. You can call the service's operations using
syntax like svc$operation(...), where svc is the name you've assigned
to the client. The available operations are listed in the
Operations section.
Service syntax
svc <- machinelearning(
config = list(
credentials = list(
creds = list(
access_key_id = "string",
secret_access_key = "string",
session_token = "string"
),
profile = "string",
anonymous = "logical"
),
endpoint = "string",
region = "string",
close_connection = "logical",
timeout = "numeric",
s3_force_path_style = "logical",
sts_regional_endpoint = "string"
),
credentials = list(
creds = list(
access_key_id = "string",
secret_access_key = "string",
session_token = "string"
),
profile = "string",
anonymous = "logical"
),
endpoint = "string",
region = "string"
)
Operations
| add_tags | Adds one or more tags to an object, up to a limit of 10 |
| create_batch_prediction | Generates predictions for a group of observations |
| create_data_source_from_rds | Creates a DataSource object from an Amazon Relational Database Service (Amazon RDS) |
| create_data_source_from_redshift | Creates a DataSource from a database hosted on an Amazon Redshift cluster |
| create_data_source_from_s3 | Creates a DataSource object |
| create_evaluation | Creates a new Evaluation of an MLModel |
| create_ml_model | Creates a new MLModel using the DataSource and the recipe as information sources |
| create_realtime_endpoint | Creates a real-time endpoint for the MLModel |
| delete_batch_prediction | Assigns the DELETED status to a BatchPrediction, rendering it unusable |
| delete_data_source | Assigns the DELETED status to a DataSource, rendering it unusable |
| delete_evaluation | Assigns the DELETED status to an Evaluation, rendering it unusable |
| delete_ml_model | Assigns the DELETED status to an MLModel, rendering it unusable |
| delete_realtime_endpoint | Deletes a real time endpoint of an MLModel |
| delete_tags | Deletes the specified tags associated with an ML object |
| describe_batch_predictions | Returns a list of BatchPrediction operations that match the search criteria in the request |
| describe_data_sources | Returns a list of DataSource that match the search criteria in the request |
| describe_evaluations | Returns a list of DescribeEvaluations that match the search criteria in the request |
| describe_ml_models | Returns a list of MLModel that match the search criteria in the request |
| describe_tags | Describes one or more of the tags for your Amazon ML object |
| get_batch_prediction | Returns a BatchPrediction that includes detailed metadata, status, and data file information for a Batch Prediction request |
| get_data_source | Returns a DataSource that includes metadata and data file information, as well as the current status of the DataSource |
| get_evaluation | Returns an Evaluation that includes metadata as well as the current status of the Evaluation |
| get_ml_model | Returns an MLModel that includes detailed metadata, data source information, and the current status of the MLModel |
| predict | Generates a prediction for the observation using the specified ML Model |
| update_batch_prediction | Updates the BatchPredictionName of a BatchPrediction |
| update_data_source | Updates the DataSourceName of a DataSource |
| update_evaluation | Updates the EvaluationName of an Evaluation |
| update_ml_model | Updates the MLModelName and the ScoreThreshold of an MLModel |
Examples
## Not run:
svc <- machinelearning()
svc$add_tags(
Foo = 123
)
## End(Not run)