import_batch {pathviewr} | R Documentation |
Batch import of files for either Motive or Flydra (but not a mix of both)
Description
Batch import of files for either Motive or Flydra (but not a mix of both)
Usage
import_batch(
file_path_list,
import_method = c("flydra", "motive"),
file_id = NA,
subject_name = NULL,
frame_rate = NULL,
simplify_marker_naming = TRUE,
import_messaging = FALSE,
...
)
Arguments
file_path_list |
A list of file paths |
import_method |
Either "flydra" or "motive" |
file_id |
Optional |
subject_name |
For Flydra, the assigned subject name |
frame_rate |
For Flydra, the assigned frame rate |
simplify_marker_naming |
default TRUE; for Motive, whether marker naming should be simplified |
import_messaging |
default FALSE; should this function report each time a file has been imported? |
... |
Additional arguments (may remove this if needed) |
Details
Refer to read_motive_csv()
and read_flydra_mat()
for
details of data import methods.
Value
A list of viewr objects (tibble or data.frame with attribute
pathviewr_steps
that includes "viewr"
).
Author(s)
Vikram B. Baliga
See Also
Other data import functions:
as_viewr()
,
import_and_clean_batch()
,
read_flydra_mat()
,
read_motive_csv()
Other batch functions:
bind_viewr_objects()
,
clean_viewr_batch()
,
import_and_clean_batch()
Examples
## Since we only have one example file of each type provided
## in pathviewr, we will simply import the same example multiple
## times to simulate batch importing. Replace the contents of
## the following list with your own list of files to be imported.
## Make a list of the same example file 3x
import_list <-
c(rep(
system.file("extdata", "pathviewr_motive_example_data.csv",
package = 'pathviewr'),
3
))
## Batch import
motive_batch_imports <-
import_batch(import_list,
import_method = "motive",
import_messaging = TRUE)
## Batch cleaning of these imported files
## via clean_viewr_batch()
motive_batch_cleaned <-
clean_viewr_batch(
file_announce = TRUE,
motive_batch_imports,
desired_percent = 50,
max_frame_gap = "autodetect",
span = 0.95
)
## Alternatively, use import_and_clean_batch() to
## combine import with cleaning on a batch of files
motive_batch_import_and_clean <-
import_and_clean_batch(
import_list,
import_method = "motive",
import_messaging = TRUE,
motive_batch_imports,
desired_percent = 50,
max_frame_gap = "autodetect",
span = 0.95
)
## Each of these lists of objects can be bound into
## one viewr object (i.e. one tibble) via
## bind_viewr_objects()
motive_bound_one <-
bind_viewr_objects(motive_batch_cleaned)
motive_bound_two <-
bind_viewr_objects(motive_batch_import_and_clean)
## Either route results in the same object ultimately:
identical(motive_bound_one, motive_bound_two)