clean_viewr {pathviewr} | R Documentation |
All-in-one function to clean imported objects
Description
For an imported viewr object, run through the cleaning pipeline as desired
Usage
clean_viewr(
obj_name,
relabel_viewr_axes = TRUE,
gather_tunnel_data = TRUE,
trim_tunnel_outliers = TRUE,
standardization_option = "rotate_tunnel",
get_velocity = TRUE,
select_x_percent = TRUE,
rename_viewr_characters = FALSE,
separate_trajectories = TRUE,
get_full_trajectories = TRUE,
fill_traj_gaps = FALSE,
...
)
Arguments
obj_name |
The input viewr object; a tibble or data.frame with attribute
|
relabel_viewr_axes |
default TRUE, should axes be relabeled? |
gather_tunnel_data |
default TRUE, should tunnel data be gathered? |
trim_tunnel_outliers |
default TRUE, outliers be trimmed? |
standardization_option |
default "rotate_tunnel"; which standardization option should be used? See Details for more. |
get_velocity |
default TRUE, should velocity be computed? |
select_x_percent |
default TRUE, should a region of interest be selected? |
rename_viewr_characters |
default FALSE, should subjects be renamed? |
separate_trajectories |
default TRUE, should trajectories be defined? |
get_full_trajectories |
default TRUE, should only full trajectories be retained? |
fill_traj_gaps |
default FALSE, should gaps in trajectories be filled? |
... |
Additional arguments passed to any of the corresponding functions |
Details
Each argument corresponds to a standalone function in
pathviewr
. E.g. the parameter relabel_viewr_axes
allows a
user to choose whether pathviewr::relabel_viewr_axes()
is run
internally. Should the user desire to use any non-default parameter values
for any functions included here, they should be supplied to this function
as additional arguments formatted exactly as they would appear in their
corresponding function(s). E.g. if the "autodetect" feature in
pathviewr::separate_trajectories()
is desired, add an argument
max_frame_gap = "autodetect"
to the arguments supplied to this
function.
Value
A viewr object (tibble or data.frame with attribute
pathviewr_steps
that includes "viewr"
) that has passed
through several pathviewr
functions as desired by the user,
resulting in data that have been cleaned and ready for analyses.
Author(s)
Vikram B. Baliga
See Also
Other all in one functions:
import_and_clean_viewr()
Examples
library(pathviewr)
## Import the example Motive data included in the package
motive_data <-
read_motive_csv(system.file("extdata", "pathviewr_motive_example_data.csv",
package = 'pathviewr'))
motive_full <-
motive_data %>%
clean_viewr(desired_percent = 50,
max_frame_gap = "autodetect",
span = 0.95)
## Alternatively, used the import_and_clean_viewr()
## function to combine these steps
motive_import_and_clean <-
import_and_clean_viewr(
file_name = system.file("extdata", "pathviewr_motive_example_data.csv",
package = 'pathviewr'),
desired_percent = 50,
max_frame_gap = "autodetect",
span = 0.95
)