count_pairwise_trans {pastboon} | R Documentation |
Count pairwise transitions between a given set of states
Description
Counts the frequencies of transitions between each pair of states from a given set of states.
Usage
count_pairwise_trans(net, method = c("BNp", "SDDS", "PEW"), params, states,
steps = 1, repeats = 1000, asynchronous = TRUE,
update_prob = NULL)
Arguments
net |
A network structure of the class |
method |
The parameterization method to be used. Options are:
Each method requires a different format for the |
params |
The parameter values depending on
|
states |
The network states among which pairwise transitions are to be counted. This should be a matrix (where the rows represent the binary form of the states) or a vector (for the binary form of a single state). The number of matrix columns (or the length of the vector) should match the number of network nodes. |
steps |
The number of time-steps, which should be a non-negative integer. |
repeats |
The number of repeats, which should be a positive integer. |
asynchronous |
If |
update_prob |
The probability of updating each variable (node) in each time-step when |
Details
Counting the number of transitions between each pair of states reveals the reachability of one state from another. This function performs simulations by starting from each state in states
for steps
time-steps and repeats
iterations, and counts the number of transitions to other states in states
.
Value
A matrix where each element (i, j) represents the number of transitions from the ith state to the jth state across steps
time-steps and repeats
iterations.
References
Golinelli, O., & Derrida, B. (1989). Barrier heights in the Kauffman model. Journal De Physique, 50(13), 1587-1601.
Shmulevich, I., Dougherty, E. R., & Zhang, W. (2002). Gene perturbation and intervention in probabilistic Boolean networks. Bioinformatics, 18(10), 1319-1331.
Trairatphisan, P., Mizera, A., Pang, J., Tantar, A. A., Schneider, J., & Sauter, T. (2013). Recent development and biomedical applications of probabilistic Boolean networks. Cell communication and signaling, 11, 1-25.
Murrugarra, D., Veliz-Cuba, A., Aguilar, B., Arat, S., & Laubenbacher, R. (2012). Modeling stochasticity and variability in gene regulatory networks. EURASIP Journal on Bioinformatics and Systems Biology, 2012, 1-11.
Deritei, D., Kunšič, N., & Csermely, P. (2022). Probabilistic edge weights fine-tune Boolean network dynamics. PLoS Computational Biology, 18(10), e1010536.
Examples
# >>>>>>>>>>>>>>>> Load network and generate random initial states <<<<<<<<<<<<<<<<<
# Load the example network
data(lac_operon_net)
# Generate some random states
states <- matrix(sample(c(0, 1), 10 * length(lac_operon_net$genes),
replace = TRUE), nrow = 10, ncol = length(lac_operon_net$genes))
# >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Method: BNp <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
# Define the parameters for the BNp method
params <- rep(0.05, length(lac_operon_net$genes))
# Obtain frequency of pairwise transitions
pairwise_trans <- count_pairwise_trans(lac_operon_net, states = states,
method = "BNp", params = params, steps = 100, repeats = 10)
# >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Method: SDDS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
# Define the parameters for the SDDS method
props <- rep(0.95, length(lac_operon_net$genes))
params <- list(p00 = props, p01 = props, p10 = props, p11 = props)
# Obtain frequency of pairwise transitions
pairwise_trans <- count_pairwise_trans(lac_operon_net, states = states,
method = "SDDS", params = params, steps = 100, repeats = 10)
# >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Method: PEW <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
# Extract edges from the network
edges <- extract_edges(lac_operon_net)
# Define the parameters for the PEW method
p_on <- runif(nrow(edges))
p_off <- runif(nrow(edges))
params <- list(p_on = p_on, p_off = p_off)
# Obtain frequency of pairwise transitions
pairwise_trans <- count_pairwise_trans(lac_operon_net, states = states,
method = "PEW", params = params, steps = 100, repeats = 10)