pasad_train {pasadr} | R Documentation |
A training function of Process-Aware Stealthy Attack Detection(PASAD)
Description
Singular value decomposition of log covariance matrix (Trajectory matrix). This is a training phase of pasad
Usage
pasad_train(x, train_idx, r = 3, ws, scree_plot = FALSE)
Arguments
x |
A signal data for inspectation. |
train_idx |
A training index fot pasad. For example, |
r |
A cardinal number of eigen value. Generally r is smaller than 3. (default : 3). |
ws |
A length of lag for creating covariance matrix. (default is a half of training length). |
scree_plot |
Whether to draw a scree_plot or not. (default : TRUE). |
Value
An object of class pasad_train
.
N |
A length of signal data. |
L |
A length of lag for creating covariance matrix. |
U |
The r leading eigenvectors. |
X |
A trajectory matrix. |
x |
An original signal. |
ws |
A length of lag for creating covariance matrix. |
train_idx |
A training index fot pasad. |
x_train |
A data used for training. |
singulars |
A transpose of singular matrix |
Author(s)
Donghwan Kim
donhkim9714@korea.ac.kr
dhkim2@bistel.com
References
Wissam Aoudi, Mikel Iturbe, and Magnus Almgren (2018) <DOI:10.1145/3243734.3243781>. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 817-831.
https://github.com/mikeliturbe/pasad
https://github.com/rahulrajpl/PyPASAD
See Also
Examples
# data input
fpath = system.file("extdata", "sa.csv", package="pasadr")
sa = read.csv(fpath)
## NOT RUN:
## data(package = "pasadr")
# check data
sig = sa$V5
plot(sig)
# training using pasad and check the scree plot
train_idx = c(1:500)
obj = pasad_train(x = sig,
train_idx = train_idx,
r = 1,
ws = length(train_idx)/2,
scree_plot = TRUE)
# check the pasad model objects
str(obj)