A Common API to Modeling and Analysis Functions


[Up] [Top]

Documentation for package ‘parsnip’ version 1.2.1

Help Pages

A B C D E F G L M N P R S T U misc

-- A --

add_rowindex Add a column of row numbers to a data frame
augment.model_fit Augment data with predictions
autoplot.glmnet Create a ggplot for a model object
autoplot.model_fit Create a ggplot for a model object
auto_ml Automatic Machine Learning

-- B --

bag_mars Ensembles of MARS models
bag_mlp Ensembles of neural networks
bag_tree Ensembles of decision trees
bart Bayesian additive regression trees (BART)
boost_tree Boosted trees

-- C --

C5_rules C5.0 rule-based classification models
case_weights Using case weights with parsnip
case_weights_allowed Determine if case weights are used
cforest_train A wrapper function for conditional inference tree models
control_parsnip Control the fit function
contr_one_hot Contrast function for one-hot encodings
ctree_train A wrapper function for conditional inference tree models
cubist_rules Cubist rule-based regression models

-- D --

decision_tree Decision trees
descriptors Data Set Characteristics Available when Fitting Models
discrim_flexible Flexible discriminant analysis
discrim_linear Linear discriminant analysis
discrim_quad Quadratic discriminant analysis
discrim_regularized Regularized discriminant analysis

-- E --

extract-parsnip Extract elements of a parsnip model object
extract_fit_engine.model_fit Extract elements of a parsnip model object
extract_parameter_dials.model_spec Extract elements of a parsnip model object
extract_parameter_set_dials.model_spec Extract elements of a parsnip model object
extract_spec_parsnip.model_fit Extract elements of a parsnip model object

-- F --

fit.model_spec Fit a Model Specification to a Dataset
fit_xy.model_spec Fit a Model Specification to a Dataset

-- G --

gen_additive_mod Generalized additive models (GAMs)
glance.model_fit Construct a single row summary "glance" of a model, fit, or other object
glm_grouped Fit a grouped binomial outcome from a data set with case weights

-- L --

linear_reg Linear regression
logistic_reg Logistic regression

-- M --

mars Multivariate adaptive regression splines (MARS)
max_mtry_formula Determine largest value of mtry from formula. This function potentially caps the value of 'mtry' based on a formula and data set. This is a safe approach for survival and/or multivariate models.
maybe_data_frame Fuzzy conversions
maybe_matrix Fuzzy conversions
min_cols Execution-time data dimension checks
min_rows Execution-time data dimension checks
mlp Single layer neural network
model_fit Model Fit Object Information
model_formula Formulas with special terms in tidymodels
model_spec Model Specification Information
multinom_reg Multinomial regression
multi_predict Model predictions across many sub-models
multi_predict.default Model predictions across many sub-models
multi_predict._C5.0 Model predictions across many sub-models
multi_predict._earth Model predictions across many sub-models
multi_predict._elnet Model predictions across many sub-models
multi_predict._glmnetfit Model predictions across many sub-models
multi_predict._lognet Model predictions across many sub-models
multi_predict._multnet Model predictions across many sub-models
multi_predict._torch_mlp Model predictions across many sub-models
multi_predict._train.kknn Model predictions across many sub-models
multi_predict._xgb.Booster Model predictions across many sub-models

-- N --

naive_Bayes Naive Bayes models
nearest_neighbor K-nearest neighbors
null_model Null model

-- P --

parsnip_addin Start an RStudio Addin that can write model specifications
parsnip_update Updating a model specification
pls Partial least squares (PLS)
poisson_reg Poisson regression models

-- R --

rand_forest Random forest
repair_call Repair a model call object
required_pkgs.model_fit Determine required packages for a model
required_pkgs.model_spec Determine required packages for a model
req_pkgs Determine required packages for a model
rule_fit RuleFit models

-- S --

set_args Change elements of a model specification
set_engine Declare a computational engine and specific arguments
set_mode Change elements of a model specification
show_engines Display currently available engines for a model
svm_linear Linear support vector machines
svm_poly Polynomial support vector machines
svm_rbf Radial basis function support vector machines

-- T --

tidy.model_fit Turn a parsnip model object into a tidy tibble
translate Resolve a Model Specification for a Computational Engine
translate.default Resolve a Model Specification for a Computational Engine

-- U --

update.bag_mars Updating a model specification
update.bag_mlp Updating a model specification
update.bag_tree Updating a model specification
update.bart Updating a model specification
update.boost_tree Updating a model specification
update.C5_rules Updating a model specification
update.cubist_rules Updating a model specification
update.decision_tree Updating a model specification
update.discrim_flexible Updating a model specification
update.discrim_linear Updating a model specification
update.discrim_quad Updating a model specification
update.discrim_regularized Updating a model specification
update.gen_additive_mod Updating a model specification
update.linear_reg Updating a model specification
update.logistic_reg Updating a model specification
update.mars Updating a model specification
update.mlp Updating a model specification
update.multinom_reg Updating a model specification
update.naive_Bayes Updating a model specification
update.nearest_neighbor Updating a model specification
update.pls Updating a model specification
update.poisson_reg Updating a model specification
update.proportional_hazards Updating a model specification
update.rand_forest Updating a model specification
update.rule_fit Updating a model specification
update.survival_reg Updating a model specification
update.surv_reg Updating a model specification
update.svm_linear Updating a model specification
update.svm_poly Updating a model specification
update.svm_rbf Updating a model specification

-- misc --

.cols Data Set Characteristics Available when Fitting Models
.dat Data Set Characteristics Available when Fitting Models
.extract_surv_status Extract survival status
.extract_surv_time Extract survival time
.facts Data Set Characteristics Available when Fitting Models
.lvls Data Set Characteristics Available when Fitting Models
.model_param_name_key Translate names of model tuning parameters
.obs Data Set Characteristics Available when Fitting Models
.preds Data Set Characteristics Available when Fitting Models
.x Data Set Characteristics Available when Fitting Models
.y Data Set Characteristics Available when Fitting Models