A B C D E F G L M N P R S T U misc
add_rowindex | Add a column of row numbers to a data frame |
augment.model_fit | Augment data with predictions |
autoplot.glmnet | Create a ggplot for a model object |
autoplot.model_fit | Create a ggplot for a model object |
auto_ml | Automatic Machine Learning |
bag_mars | Ensembles of MARS models |
bag_mlp | Ensembles of neural networks |
bag_tree | Ensembles of decision trees |
bart | Bayesian additive regression trees (BART) |
boost_tree | Boosted trees |
C5_rules | C5.0 rule-based classification models |
case_weights | Using case weights with parsnip |
case_weights_allowed | Determine if case weights are used |
cforest_train | A wrapper function for conditional inference tree models |
control_parsnip | Control the fit function |
contr_one_hot | Contrast function for one-hot encodings |
ctree_train | A wrapper function for conditional inference tree models |
cubist_rules | Cubist rule-based regression models |
decision_tree | Decision trees |
descriptors | Data Set Characteristics Available when Fitting Models |
discrim_flexible | Flexible discriminant analysis |
discrim_linear | Linear discriminant analysis |
discrim_quad | Quadratic discriminant analysis |
discrim_regularized | Regularized discriminant analysis |
extract-parsnip | Extract elements of a parsnip model object |
extract_fit_engine.model_fit | Extract elements of a parsnip model object |
extract_parameter_dials.model_spec | Extract elements of a parsnip model object |
extract_parameter_set_dials.model_spec | Extract elements of a parsnip model object |
extract_spec_parsnip.model_fit | Extract elements of a parsnip model object |
fit.model_spec | Fit a Model Specification to a Dataset |
fit_xy.model_spec | Fit a Model Specification to a Dataset |
gen_additive_mod | Generalized additive models (GAMs) |
glance.model_fit | Construct a single row summary "glance" of a model, fit, or other object |
glm_grouped | Fit a grouped binomial outcome from a data set with case weights |
linear_reg | Linear regression |
logistic_reg | Logistic regression |
mars | Multivariate adaptive regression splines (MARS) |
max_mtry_formula | Determine largest value of mtry from formula. This function potentially caps the value of 'mtry' based on a formula and data set. This is a safe approach for survival and/or multivariate models. |
maybe_data_frame | Fuzzy conversions |
maybe_matrix | Fuzzy conversions |
min_cols | Execution-time data dimension checks |
min_rows | Execution-time data dimension checks |
mlp | Single layer neural network |
model_fit | Model Fit Object Information |
model_formula | Formulas with special terms in tidymodels |
model_spec | Model Specification Information |
multinom_reg | Multinomial regression |
multi_predict | Model predictions across many sub-models |
multi_predict.default | Model predictions across many sub-models |
multi_predict._C5.0 | Model predictions across many sub-models |
multi_predict._earth | Model predictions across many sub-models |
multi_predict._elnet | Model predictions across many sub-models |
multi_predict._glmnetfit | Model predictions across many sub-models |
multi_predict._lognet | Model predictions across many sub-models |
multi_predict._multnet | Model predictions across many sub-models |
multi_predict._torch_mlp | Model predictions across many sub-models |
multi_predict._train.kknn | Model predictions across many sub-models |
multi_predict._xgb.Booster | Model predictions across many sub-models |
naive_Bayes | Naive Bayes models |
nearest_neighbor | K-nearest neighbors |
null_model | Null model |
parsnip_addin | Start an RStudio Addin that can write model specifications |
parsnip_update | Updating a model specification |
pls | Partial least squares (PLS) |
poisson_reg | Poisson regression models |
rand_forest | Random forest |
repair_call | Repair a model call object |
required_pkgs.model_fit | Determine required packages for a model |
required_pkgs.model_spec | Determine required packages for a model |
req_pkgs | Determine required packages for a model |
rule_fit | RuleFit models |
set_args | Change elements of a model specification |
set_engine | Declare a computational engine and specific arguments |
set_mode | Change elements of a model specification |
show_engines | Display currently available engines for a model |
svm_linear | Linear support vector machines |
svm_poly | Polynomial support vector machines |
svm_rbf | Radial basis function support vector machines |
tidy.model_fit | Turn a parsnip model object into a tidy tibble |
translate | Resolve a Model Specification for a Computational Engine |
translate.default | Resolve a Model Specification for a Computational Engine |
update.bag_mars | Updating a model specification |
update.bag_mlp | Updating a model specification |
update.bag_tree | Updating a model specification |
update.bart | Updating a model specification |
update.boost_tree | Updating a model specification |
update.C5_rules | Updating a model specification |
update.cubist_rules | Updating a model specification |
update.decision_tree | Updating a model specification |
update.discrim_flexible | Updating a model specification |
update.discrim_linear | Updating a model specification |
update.discrim_quad | Updating a model specification |
update.discrim_regularized | Updating a model specification |
update.gen_additive_mod | Updating a model specification |
update.linear_reg | Updating a model specification |
update.logistic_reg | Updating a model specification |
update.mars | Updating a model specification |
update.mlp | Updating a model specification |
update.multinom_reg | Updating a model specification |
update.naive_Bayes | Updating a model specification |
update.nearest_neighbor | Updating a model specification |
update.pls | Updating a model specification |
update.poisson_reg | Updating a model specification |
update.proportional_hazards | Updating a model specification |
update.rand_forest | Updating a model specification |
update.rule_fit | Updating a model specification |
update.survival_reg | Updating a model specification |
update.surv_reg | Updating a model specification |
update.svm_linear | Updating a model specification |
update.svm_poly | Updating a model specification |
update.svm_rbf | Updating a model specification |
.cols | Data Set Characteristics Available when Fitting Models |
.dat | Data Set Characteristics Available when Fitting Models |
.extract_surv_status | Extract survival status |
.extract_surv_time | Extract survival time |
.facts | Data Set Characteristics Available when Fitting Models |
.lvls | Data Set Characteristics Available when Fitting Models |
.model_param_name_key | Translate names of model tuning parameters |
.obs | Data Set Characteristics Available when Fitting Models |
.preds | Data Set Characteristics Available when Fitting Models |
.x | Data Set Characteristics Available when Fitting Models |
.y | Data Set Characteristics Available when Fitting Models |