predict.parfm {parfm} | R Documentation |
Predictions of frailty values for Parametric Frailty Models
Description
The function predict.parfm()
computes predictions of frailty values for objects of class parfm
.
Usage
## S3 method for class 'parfm'
predict(object, ...)
Arguments
object |
A parametric frailty model, object of class |
... |
see |
Value
An object of class predict.parfm
.
Author(s)
Federico Rotolo [aut, cre], Marco Munda [aut], Andrea Callegaro [ctb]
References
Glidden D, Vittinghoff E (2004). Modelling Clustered Survival Data From Multicentre Clinical Trials. Statistics in medicine, 23(3), 369–388.
Munda M, Rotolo F, Legrand C (2012). parfm: Parametric Frailty Models in R. Journal of Statistical Software, 51(11), 1-20. DOI <doi: 10.18637/jss.v051.i11>
See Also
Examples
data(kidney)
kidney$sex <- kidney$sex - 1
model <- parfm(Surv(time,status) ~ sex + age,
cluster = "id", data = kidney,
dist = "exponential", frailty = "gamma")
u <- predict(model)
u
# Predictions from semi-parametric Gamma frailty model
# via coxph() function
model.coxph <- coxph(Surv(time,status) ~ sex + age +
frailty(id, frailty = "gamma", eps = 1e-11),
outer.max = 15, data = kidney)
u.coxph <- exp(model.coxph$frail)
# Plot of predictions from both models
par(mfrow = c(1,2))
ylim <- c(0, max(c(u, u.coxph)))
plot(u, sort = "i",
main = paste("Parametric",
"Gamma frailty model",
"with Exponential baseline",
sep = "\n"),
ylim = ylim)
names(u.coxph) <- kidney[seq(2,76, 2), "id"]
class(u.coxph) <- "predict.parfm"
attr(u.coxph, "clustname") <- "id"
plot(u.coxph, sort = "i",
main = paste("Semi-parametric",
"Gamma frailty model", sep = "\n"),
ylim = ylim)
[Package parfm version 2.7.7 Index]