CalcFert {paramDemo} | R Documentation |
Calculating Parametric Age-Specific Fertility.
Description
CalcFert
is used to calculate age-specific fertility from different parametric models.
Usage
CalcFert(beta, x, modelFert = "quadratic", checkBeta = TRUE)
Arguments
beta |
Numerical vector of age-specific fertility parameters (see details). |
x |
Numerical vector of ages at which to calculate fertility. |
modelFert |
Age-specific fertility model. Options are “ |
checkBeta |
Logical to verify that the |
Details
1) Age-specific fertility models:
The age-specific fertility models correspond to the expected number of offspring produced by adults of a given age. Therefore, for a random variable Y_{x}
with realizations y_x
for the number of offspring produced by adults of age x
, we have that E(Y_x) = g(x | \beta)
, where g: \mathbb{R}_{\ge 0} \rightarrow \mathbb{R}_{\ge 0}
is a non-negative smooth fertility function and \beta
is a vector of parameters to be estimated. The functional forms of function g
fall in two main categories, namely polynomial and distributional models.
2.a) Polynomial:
Of the models available in paramDemo
, the “quadratic
”, “PeristeraKostaki
” (Peristera and Kostaki 2007), and “ColcheroMuller
” (Colchero et al. 2021, Muller et al. 2020) fall within the polynomial category. Both, the “PeristeraKostaki
” and “ColcheroMuller
” are non-symmetric around the age at maximum fertility.
2.b) Distributional:
The distributional models are of the form
g(x | \beta) = R f(x | \beta_1),
where f: \mathbb{R}_{\ge 0} \rightarrow \mathbb{R}_{\ge 0}
is a probability density function, R > 0
is a parameter for the total fertility rate, and \beta_1 \in \beta
is a vector of parameters. The
“Hadwiger
” (Hadwiger 1940), “gamma
” (Hoem et al. 1981), “beta
” (Hoem et al. 1981), “skewNormal
” (Mazzuco and Scarpa 2011, 2015), “gammaMixture
” (Hoem et al. 1981), “HadwigerMixture
” (Chandola et al. 1991), “skewSymmetric
” (Mazzuco and Scarpa 2011, 2015), and “skewLogistic
” (Asili et al. 2014) all fall in this category. Notably, the “gammaMixture
”, “HadwigerMixture
”, “skewSymmetric
”, “skewLogistic
” are appropriate when fertility might be bimodal (Hoem et al. 1981, Chandola et al. 1999, Mazzuco and Scarpa 2011, 2015, Asili et al. 2014).
2) Specifying beta parameters:
Argument beta
requires a vector of parameters. For instance, for a quadratic model with parameter vector \beta^{\top} = [0.5, 0.01, 10]
, the argument should be specified as theta = c(b0 = 0.5, b1 = 0.01, b2 = 10)
. Note that in this example the parameter names are specified directly, this is required when checkBeta = FALSE
. Although assigning the names to each parameter is not necessary when checkBeta = TRUE
, it is advisable to ensure that the right values are assigned to the right parameter.
If argument checkBeta
is set to TRUE
, then the vector of beta
parameters is verified for consistency with the requirements of the model and shape selected.
Value
CalcFert
returns a vector of class “numeric
” with the fertility values at the specified ages.
Author(s)
Fernando Colchero fernando_colchero@eva.mpg.de
References
Asili, S., Rezaei, S. & Najjar, L. (2014) Using Skew-Logistic Probability Density Function as a Model for Age-Specific Fertility Rate Pattern. BioMed Research International, 2014, 790294.
Azzalini, A. (1985) A Class of Distributions Which Includes the Normal Ones. Scandinavian Journal of Statistics, 2, 171-178.
Chandola, T., Coleman, D.A. & Hiorns, R.W. (1999) Recent European fertility patterns: Fitting curves to ‘distorted’ distributions. Population Studies, 53, 317-329.
Colchero, F. (In prep.) Inference on age-specific fertility in ecology and evolution. Learning from other disciplines and improving the state of the art.
Colchero, F., Eckardt, W. & Stoinski, T. (2021) Evidence of demographic buffering in an endangered great ape: Social buffering on immature survival and the role of refined sex-age classes on population growth rate. Journal of Animal Ecology, 90, 1701-1713.
Hadwiger, H. (1940) Eine analytische Reproduktionssunktion fur biologische Gesamtheiten. Scandinavian Actuarial Journal, 1940, 101-113.
Hoem, J.M., Madien, D., Nielsen, J.L., Ohlsen, E.M., Hansen, H.O. & Rennermalm, B. (1981) Experiments in modelling recent Danish fertility curves. Demography, 18, 231-244.
Mazzuco, S. & Scarpa, B. (2011) Fitting age-specific fertility rates by a skew- symmetric probability density function. (Working paper 10), University of Padua.
Mazzuco, S. & Scarpa, B. (2015) Fitting age-specific fertility rates by a flexible generalized skew normal probability density function. Journal of the Royal Statistical Society: Series A, 178, 187-203.
Muller, M. N., Blurton Jones, N. G, Colchero, F., Thompson, M. E., Enigk, D. K. (2020) Sexual dimorphism in chimpanzee (Pan troglodytes schweinfurthii) and human age-specific fertility. Journal of human evolution, 144, 102795.
Peristera, P. & Kostaki, A. (2007) Modeling fertility in modern populations. Demographic Research, 16, 141-194.
See Also
CalcMort
to calculate age-specific mortality, CalcSurv
to calculate age-specific survival
Examples
# Age specific fertility based on quadratic model (default):
fert <- CalcFert(beta = c(b0 = 0.5, b1 = 0.01, b2 = 10), x = 10)
# Age specific fertility based on gamma model:
fert <- CalcFert(beta = c(b0 = 13, b1 = 2, b2 = 0.15), x = 10,
modelFert = "gamma")