timeroc_predict {parTimeROC} | R Documentation |
timeroc_predict
Description
Predict time-dependent ROC from fitted model.
Usage
timeroc_predict(
obj,
t,
newx,
cutoff = 100,
B = 1,
type = "standard",
params.x,
params.t,
copula,
method = "mle",
definition = "c/d",
seed,
params.copula,
params.ph,
ci = 0.95,
h = -1e-04
)
Arguments
obj |
A 'fitTROC' or 'TimeROC' object. |
t |
A numeric/vector specifying time point of interest. (Default: Time-to-event at 50th quantile points) |
newx |
A numeric/vector specifying biomarker of interest. |
cutoff |
A numeric specifying total cutoff point on ROC curve. |
B |
An integer specifying bootstrap iteration. If B > 1, will also return confidence interval. |
type |
A string indicate type of analysis to run. (Default = 'standard') |
params.x |
A named vector for biomarker's parameter. |
params.t |
A named vector for time-to-event's parameter. |
copula |
A string indicating the type of copula to be used. |
method |
A string specifying method of estimation. (Default = 'mle') |
definition |
A string indicating ROC definition to use. (Default = 'c/d') |
seed |
A numeric to pass in set.seed. |
params.copula |
An integer specifying the copula's parameter. |
params.ph |
An integer specifying the PH parameter. |
ci |
An integer 0 to 1 for confidence level. |
h |
An integer specifying small change of time (To compute density from S(t|x)) |
Value
A list of ROC dataframe for each time-to-event.
Examples
# PH model
test <- timeroc_obj('normal-weibull-PH')
set.seed(23456)
rr <- rtimeroc(obj = test, censor.rate = 0.1, n=500,
params.t = c(shape=1, scale=5),
params.x = c(mean=5, sd=1),
params.ph=0.5)
cc <- timeroc_fit(x=rr$x, t=rr$t, event=rr$event, obj = test)
start.t <- Sys.time()
jj <- timeroc_predict(cc)
print(Sys.time()-start.t)
# Copula model
test <- timeroc_obj(dist = 'gompertz-gompertz-copula', copula='clayton90',
params.t = c(shape=3,rate=1),
params.x = c(shape=1,rate=2),
params.copula=-5)
set.seed(23456)
rr <- rtimeroc(obj = test, censor.rate = 0.2, n=500)
cc <- timeroc_fit(x=rr$x, t=rr$t, event=rr$event, obj = test)
start.t <- Sys.time()
jj <- timeroc_predict(cc)
print(Sys.time()-start.t)