timeroc_fit {parTimeROC} | R Documentation |
timeroc_fit
Description
Fit TimeROC using Maximum Likelihood Estimator.
Usage
timeroc_fit(
obj,
x,
t,
event,
init.param.x = NULL,
init.param.t = NULL,
init.param.copula = NULL,
init.param.ph = NULL,
ci = 0.95,
method = "mle"
)
Arguments
obj |
An initialized 'TimeROC' object. |
x |
A numeric vector of single biomarker or covariate. |
t |
A numeric vector of time-to-event. |
event |
A numeric vector of event status (0=dead, 1=alive). |
init.param.x |
Vector of starting value for biomarker parameter. |
init.param.t |
Vector of starting value for time-to-event parameter. |
init.param.copula |
An integer of starting value for copula parameter. |
init.param.ph |
An integer of starting value for association parameter. |
ci |
An integer 0 to 1 for confidence level. |
method |
A string specifying method of estimation. (Default = 'mle') |
Value
return a list of frequentist or bayesian estimator.
Examples
## fitting copula model
test <- timeroc_obj(dist = 'gompertz-gompertz-copula', copula = "gumbel90")
set.seed(23456)
rr <- rtimeroc(obj = test, censor.rate = 0, n=500,
params.t = c(shape=3,rate=1),
params.x = c(shape=1,rate=2),
params.copula=-5) # name of parameter must follow standard
plot(t~x, rr)
start.t <- Sys.time()
cc <- timeroc_fit(rr$x, rr$t, rr$event, obj = test)
print(Sys.time()-start.t)
## fitting PH model
test <- timeroc_obj(dist = 'weibull-lognormal-PH')
set.seed(23456)
rr <- rtimeroc(obj = test, censor.rate = 0, n=100,
params.t = c(meanlog=0, sdlog=1),
params.x = c(shape=2, scale=1),
params.ph=0.5) # name of parameter must follow standard
plot(t~x, rr)
start.t <- Sys.time()
cc <- timeroc_fit(rr$x, rr$t, rr$event, obj = test)
print(Sys.time()-start.t)
[Package parTimeROC version 0.1.0 Index]