panel_correl {panelWranglR} | R Documentation |
Panel linear combinations
Description
A function to find highly correlated variables in a panel of data, both by cross sections and by time dummies.
Usage
panel_correl(data, cross.section = NULL, time.variable = NULL,
corr.threshold = 0.7, autocorr.threshold = 0.5,
cross.threshold = 0.7, select.cross.sections = NULL,
select.time.periods = NULL)
Arguments
data |
The data to use, a data.frame or a data.table. |
cross.section |
The name of the cross sectional variable. |
time.variable |
The name of the time variable. |
corr.threshold |
The correlation threshold for finding significant correlations in the base specification, disregarding time or cross sectional dependencies. |
autocorr.threshold |
The correlation threshold for autocorrelation (splitting the pooled panel into cross sections). |
cross.threshold |
The correlation threshold for finding significant correlations in the cross sections. |
select.cross.sections |
An optional subset of cross sectional units. |
select.time.periods |
An optional subset of time periods |
Examples
x_1 <- rnorm( 100 )
x_2 <- rnorm( 100 ) + 0.5 * x_1
cross_levels <- c( "AT", "DE")
time <- seq(1:50)
time <- rep(time, 2)
geo_list <- list()
for(i in 1:length(cross_levels))
{ geo <- rep( cross_levels[i], 50 )
geo_list[[i]] <- geo }
geo <- unlist(geo_list)
geo <- as.data.frame(geo)
example_data <- do.call ( cbind, list( time, x_1, x_2))
example_data <- as.data.frame(example_data)
example_data <- cbind( geo,
example_data)
names(example_data) <- c("geo", "time", "x_1",
"x_2")
panel_correl( data = example_data,
cross.section = "geo",
time.variable = "time",
corr.threshold = 0.2,
autocorr.threshold = 0.5,
cross.threshold = 0.1)
[Package panelWranglR version 1.2.13 Index]