pairwise.item.fit {pairwise} | R Documentation |
Item Fit Indices
Description
function for calculating item fit indices. The procedures for calculating the fit indices are based on the formulas given in Wright & Masters, (1982, P. 100), with further clarification given in http://www.rasch.org/rmt/rmt34e.htm
.
Usage
pairwise.item.fit(pers_obj, na_treat = NA)
Arguments
pers_obj |
an object of class |
na_treat |
value to be assigned to residual cells which have missing data in the original response matrix. default is set to |
Details
contrary to many IRT software using Ml based item parameter estimation, pairwise
will not exclude persons, showing perfect response vectors (e.g. c(0,0,0) for dataset with three variables), prior to the scaling. Therefor the fit statistics computed with pairwise
may deviate somewhat from the fit statistics produced by IRT software using Ml based item parameter estimation (e.g. R-package eRm
), depending on the amount of persons with perfect response vectors in the data.
Value
an object of class c("pifit", "data.frame")
containing item fit indices.
References
Wright, B. D., & Masters, G. N. (1982). Rating Scale Analysis. Chicago: MESA Press.
Wright, B. D., & Masters, G. N. (1990). Computation of OUTFIT and INFIT Statistics. Rasch Measurement Transactions, 3(4), 84–85.
Examples
########
data(sim200x3)
result <- pers(pair(sim200x3))
pairwise.item.fit(pers_obj=result) # item fit statistic