use_linear_regression {packDAMipd} | R Documentation |
########################################################################### Get the parameter values using the linear regression
Description
########################################################################### Get the parameter values using the linear regression
Usage
use_linear_regression(
param_to_be_estimated,
dataset,
indep_var,
covariates,
interaction
)
Arguments
param_to_be_estimated |
parameter of interest |
dataset |
data set to be provided |
indep_var |
the independent variable (column name in data file) |
covariates |
list of covariates-calculations to be done before passing |
interaction |
boolean value to indicate interaction in the case of linear regression, false by default |
Details
This function returns the results and plots after doing linear regression Requires param to be estimated, dataset, independent variables and information on covariates, and interaction variables if there are Uses form_expression_lm to create the expression as per R standard for e.g lm(y ~ x ). Returns the fit result,s summary results as returned by summary(), confidence interval for fit coefficients (ci_coeff), variance covariance matrix, cholesky decomposition matrix, Results from correlation test, plot of diagnostic tests and model fit assumptions, plot of model prediction diagnostic include AIC, R2, and BIC. The results of the prediction ie predicted values when each of covariate is fixed will be returned in prediction matrix predicted values will provide the mean value of param_to_to_estimated as calculated by the linear regression formula. ref:https://www.statmethods.net/stats/regression.html
Value
the results of the regression analysis
Examples
results_lm <- use_linear_regression("dist",
dataset = cars,
indep_var = "speed", covariates = NA, interaction = FALSE)
library(car)
results_lm <- use_linear_regression("mpg",
dataset = mtcars,
indep_var = "disp", covariates = c("hp", "wt", "drat"),
interaction = FALSE)