use_generalised_linear_mixed_model {packDAMipd} | R Documentation |
Function for generalised linear mixed model
Description
Function for generalised linear mixed model
Usage
use_generalised_linear_mixed_model(
param_to_be_estimated,
dataset,
fix_eff,
fix_eff_interact_vars,
random_intercept_vars,
nested_intercept_vars_pairs,
cross_intercept_vars_pairs,
uncorrel_slope_intercept_pairs,
random_slope_intercept_pairs,
family,
link,
package_mixed_model
)
Arguments
param_to_be_estimated |
column name of dependent variable |
dataset |
a dataframe |
fix_eff |
names of variables as fixed effect predictors |
fix_eff_interact_vars |
those of the fixed effect predictors that show interaction |
random_intercept_vars |
names of variables for random intercept |
nested_intercept_vars_pairs |
those of the random intercept variables with nested effect |
cross_intercept_vars_pairs |
those of the random intercept variables with crossed effect |
uncorrel_slope_intercept_pairs |
variables with no correlated intercepts |
random_slope_intercept_pairs |
random slopes intercept pairs - this is a list of paired variables |
family |
family of distributions for the response variable |
link |
link function for the variances |
package_mixed_model |
package to be used for mixed model |
Value
result regression result with plot if success and -1, if failure
Examples
datafile <- system.file("extdata", "culcita_data.csv",
package = "packDAMipd")
dataset <- read.csv(datafile)
results1 = use_generalised_linear_mixed_model("predation",
dataset = datafile,fix_eff = c("ttt"), family = "binomial",
fix_eff_interact_vars = NULL, random_intercept_vars = c("block"),
nested_intercept_vars_pairs = NULL, cross_intercept_vars_pairs = NULL,
uncorrel_slope_intercept_pairs = NULL, random_slope_intercept_pairs = NULL,
link = NA, package_mixed_model = NA)
[Package packDAMipd version 1.1.0 Index]