tc.test {pEPA} | R Documentation |
Computes Test for Time Clusters.
Description
This function computes test of the equal predictive accuracy for time clusters. The null hypothesis of this test is that the equal predictive accuracy for the two methods holds within each of the time clusters. The test is suitable if either: K \ge 2
and significance level
\le 0.08326
, or 2 \le K \leq 14
and significance level
\le 0.1
, or K = \{ 2,3 \}
and significance level
\le 0.2
, where K
denotes the number of time clusters.
Usage
tc.test(evaluated1,evaluated2,realized,loss.type="SE",cl)
Arguments
evaluated1 |
same as in |
evaluated2 |
same as in |
realized |
same as in |
loss.type |
same as in |
cl |
|
Value
class htest
object, list
of
statistic |
test statistic |
parameter |
|
alternative |
alternative hypothesis of the test |
p.value |
p-value |
method |
name of the test |
data.name |
names of the tested data |
References
Qu, R., Timmermann, A., Zhu, Y. 2024. Comparing forecasting performance with panel data. International Journal of Forecasting 40, 918–941.
See Also
Examples
data(forecasts)
y <- t(observed)
f.bsr <- matrix(NA,ncol=ncol(y),nrow=56)
f.dma <- f.bsr
# extract prices predicted by BSR rec and DMA methods
for (i in 1:56)
{
f.bsr[i,] <- predicted[[i]][,1]
f.dma[i,] <- predicted[[i]][,9]
}
# 3 time clusters: Jun 1996 -- Nov 2007, Dec 2007 -- Jun 2009, Jul 2009 - Aug 2021
# rownames(observed)[1]
# rownames(observed)[139]
# rownames(observed)[158]
t.cl <- c(1,139,158)
t <- tc.test(evaluated1=f.bsr,evaluated2=f.dma,realized=y,loss.type="SE",cl=t.cl)