pARIbrain {pARI} | R Documentation |
Permutation-based All-Resolutions Inference for brain imaging.
Description
The main function for brain imaging All-Resolutions Inference (ARI) method based on critical vectors constructed
using the p-values permutation distribution. The function computes simultaneous lower bounds for the number of true discoveries
for each set of hypotheses specified in ix
controlling family-wise error rate.
Usage
pARIbrain(copes, thr=NULL, mask=NULL, alpha=.05, clusters = NULL,
alternative = "two.sided", summary_stat=c("max", "center-of-mass"),
silent=FALSE, family = "simes", delta = 0, B = 1000, rand = FALSE,
iterative = FALSE, approx = TRUE, ncomb = 100, step.down = FALSE, max.step = 10, ...)
Arguments
copes |
list of NIfTI file. The list of copes, i.e., constrasts maps, one for each subject used to compute the statistical tests. |
thr |
numeric value. Threshold used to construct the cluster map. Default @NULL. |
mask |
NIfTI file or character string. 3D array of logical values (i.e. |
alpha |
numeric value in '[0,1]'. It expresses the alpha level to control the family-wise error rate. Default 0.05. |
clusters |
NIfTI file or character string. 3D array of cluster ids (0 when voxel does not belong to any cluster) or a (character) NIfTI file name.
If |
alternative |
character string. It refers to the alternative hypothesis, must be one of |
summary_stat |
character string. Choose among |
silent |
Boolean value. Default @FALSE. If @TRUE the function prints the results. |
family |
string character. Choose a family of confidence envelopes to compute the critical vector
from |
delta |
numeric value. It expresses the delta value, please see the references. Default to 0. |
B |
numeric value. Number of permutations, default to 1000. |
rand |
Boolean value. Default @FALSE. If |
iterative |
Boolean value. If |
approx |
Boolean value. Default @TRUE. If you are treating high dimensional data, we suggest to put |
ncomb |
Numeric value. If |
step.down |
Boolean value. Default @FALSE If you want to compute the lambda calibration parameter using the step-down approach put @TRUE. |
max.step |
Numeric value. Default to 10. Maximum number of steps for the step down approach, so useful when |
... |
further arguments. See |
Value
A list with elements - out: data.frame containing the size, the number of false null hypotheses, the number of true null hypotheses, the lower bound for the true discovery proportion, and other statistics for each cluster. - clusters: matrix describing the clusters analyzed.
Author(s)
Angela Andreella
References
For the general framework of All-Resolutions Inference see:
Goeman, Jelle J., and Aldo Solari. "Multiple testing for exploratory research." Statistical Science 26.4 (2011): 584-597.
For All-Resolutions Inference for functional Magnetic Resonance Imaging data see:
Rosenblatt, Jonathan D., et al. "All-resolutions inference for brain imaging." Neuroimage 181 (2018): 786-796.
For permutation-based All-Resolutions Inference see:
Andreella, Angela, et al. "Permutation-based true discovery proportions for fMRI cluster analysis." arXiv preprint arXiv:2012.00368 (2020).
Examples
## Not run:
library(remotes)
install_github("angeella/fMRIdata")
library(fMRIdata)
data(Auditory_clusterTH3_2)
data(Auditory_copes)
data(Auditory_mask)
auditory_out <- pARIbrain(copes = Auditory_copes,
clusters = Auditory_clusterTH3_2, mask = Auditory_mask,
alpha = 0.05, silent = TRUE)
auditory_out$out
## End(Not run)