outreg {outreg} | R Documentation |
Generate Regression Table
Description
Generate a regression table in data.frame
format from a set of model fit objects.
Currently supports lm
, glm
, survreg
, and ivreg
model outcomes.
Usage
outreg(fitlist, digits = 3L, alpha = c(0.1, 0.05, 0.01),
bracket = c("se"), starred = c("coef"), robust = FALSE, small = TRUE,
constlast = FALSE, norepeat = TRUE, displayed = list(), ...)
Arguments
fitlist |
list of regression outcomes |
digits |
number of dicimal places for real numbers |
alpha |
vector of significance levels to star |
bracket |
stats to be in brackets |
starred |
stats to put stars on |
robust |
if TRUE, robust standard error is used |
small |
if TRUE, small sample parameter distribution is used |
constlast |
if TRUE, intercept is moved to the end of coefficient list |
norepeat |
if TRUE, repeated variable names are replaced by a empty string |
displayed |
a list of named logicals to customize the stats to display |
... |
alternative way to specify which stats to display |
Details
Use outreg_stat_list
to see the available stats
names. The stats names are to be used for specifying
bracket
, starred
, and displayed
options.
Statistics to include can be chosen by displayed
option or
by `...`
.
For example, outreg(fitlist, displayed = list(pv = TRUE))
is
identical with outreg(fitlist pv = TRUE)
, and
p values of coefficients are displayed.
Value
regression table in data.frame
format
Examples
fitlist <- list(lm(mpg ~ cyl, data = mtcars),
lm(mpg ~ cyl + wt + hp, data = mtcars),
lm(mpg ~ cyl + wt + hp + drat, data = mtcars))
outreg(fitlist)
# with custom regression names
outreg(setNames(fitlist, c('small', 'medium', 'large')))
# star on standard errors, instead of estimate
outreg(fitlist, starred = 'se')
# include other stats
outreg(fitlist, pv = TRUE, tv = TRUE, se = FALSE)
# poisson regression
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
fitlist2 <- list(glm(counts ~ outcome, family = poisson()),
glm(counts ~ outcome + treatment, family = poisson()))
outreg(fitlist2)
# logistic regression
fitlist3 <- list(glm(cbind(ncases, ncontrols) ~ agegp,
data = esoph, family = binomial()),
glm(cbind(ncases, ncontrols) ~ agegp + tobgp + alcgp,
data = esoph, family = binomial()),
glm(cbind(ncases, ncontrols) ~ agegp + tobgp * alcgp,
data = esoph, family = binomial()))
outreg(fitlist3)
# survival regression
library(survival)
fitlist4 <- list(survreg(Surv(time, status) ~ ph.ecog + age,
data = lung),
survreg(Surv(time, status) ~ ph.ecog + age + strata(sex),
data = lung))
outreg(fitlist4)
# tobit regression
fitlist5 <- list(survreg(Surv(durable, durable>0, type='left') ~ 1,
data=tobin, dist='gaussian'),
survreg(Surv(durable, durable>0, type='left') ~ age + quant,
data=tobin, dist='gaussian'))
outreg(fitlist5)
# instrumental variable regression
library(AER)
data("CigarettesSW", package = "AER")
CigarettesSW$rprice <- with(CigarettesSW, price/cpi)
CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi)
CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax)/cpi)
fitlist6 <- list(OLS = lm(log(packs) ~ log(rprice) + log(rincome),
data = CigarettesSW, subset = year == "1995"),
IV1 = ivreg(log(packs) ~ log(rprice) + log(rincome) |
log(rincome) + tdiff + I(tax/cpi),
data = CigarettesSW, subset = year == "1995"),
IV2 = ivreg(log(packs) ~ log(rprice) + log(rincome) |
log(population) + tdiff + I(tax/cpi),
data = CigarettesSW, subset = year == "1995"))
outreg(fitlist6)