index_ordinal_variation {otsfeatures}R Documentation

Computes the estimated index of ordinal variation (IOV) of an ordinal time series

Description

index_ordinal_variation computes the estimated index of ordinal variation of an ordinal time series

Usage

index_ordinal_variation(series, states)

Arguments

series

An OTS.

states

A numerical vector containing the corresponding states.

Details

Given an OTS of length TT with range S={s0,s1,s2,,sn}\mathcal{S}=\{s_0, s_1, s_2, \ldots, s_n\} (s0<s1<s2<<sns_0 < s_1 < s_2 < \ldots < s_n), Xt={X1,,XT}\overline{X}_t=\{\overline{X}_1,\ldots, \overline{X}_T\}, the function computes the estimated IOV given by IOV^=4nk=1n1f^k(1f^k)\widehat{IOV}=\frac{4}{n}\sum_{k=1}^{n-1}\widehat{f}_k(1-\widehat{f}_k), where f^k\widehat{f}_k is the standard estimate of the cumulative marginal probability for state sks_k computed from the series Xt\overline{X}_t.

Value

The estimated IOV.

Author(s)

Ángel López-Oriona, José A. Vilar

References

Weiß CH (2019). “Distance-based analysis of ordinal data and ordinal time series.” Journal of the American Statistical Association.

Examples

estimated_iov <- index_ordinal_variation(series = AustrianWages$data[[100]],
states = 0 : 5) # Computing the estimate of the IOV
# for one series in dataset AustrianWages

[Package otsfeatures version 1.0.0 Index]