schebyshev.u.inner.products {orthopolynom} | R Documentation |
Inner products of shifted Chebyshev polynomials
Description
This function returns a vector with n + 1
elements containing the inner product of
an order k
shifted Chebyshev polynomial of the second kind, U_k^* \left( x\right)
,
with itself (i.e. the norm squared) for orders k = 0,\;1,\; \ldots ,\;n
.
Usage
schebyshev.u.inner.products(n)
Arguments
n |
integer value for the highest polynomial order |
Details
The formula used to compute the inner products is as follows.
h_n = \left\langle {U_n^* |U_n^* } \right\rangle = \frac{\pi }{8}
.
Value
A vector with n + 1
elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Author(s)
Frederick Novomestky fnovomes@poly.edu
References
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
Examples
h <- schebyshev.u.inner.products( 10 )