schebyshev.t.polynomials {orthopolynom} | R Documentation |
Create list of shifted Chebyshev polynomials
Description
This function returns a list with n + 1
elements containing
the order k
shifted Chebyshev polynomials of the first kind, T_k^* \left( x\right)
,
for orders k = 0,\;1,\; \ldots ,\;n
.
Usage
schebyshev.t.polynomials(n, normalized)
Arguments
n |
integer value for the highest polynomial order |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
Details
The function schebyshev.t.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
Value
A list of n + 1
polynomial objects
1 |
order 0 shifted Chebyshev polynomial |
2 |
order 1 shifted Chebyshev polynomial |
...
n+1 |
order |
Author(s)
Frederick Novomestky fnovomes@poly.edu
References
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
See Also
schebyshev.u.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
Examples
###
### gemerate a list of normalized shifted T Chebyshev polynomials of orders 0 to 10
###
normalized.p.list <- schebyshev.t.polynomials( 10, normalized=TRUE )
print( normalized.p.list )
###
### gemerate a list of unnormalized shifted T Chebyshev polynomials of orders 0 to 10
###
unnormalized.p.list <- schebyshev.t.polynomials( 10, normalized=FALSE )
print( unnormalized.p.list )